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ABSTRACT

KEYWORDS: Parallel manipulators; Degrees of freedom,

Parallel manipulators with lower mobility have been a matter of cynosure to re-

searchers for the last decade or so, due to their wide scope for application and lower

power consumption as opposed to Stewart platform based six degrees-of-freedom

(DoF) solutions. However there are two major concerns with existing designs of

lower mobility manipulators; namely slow motion due to the presence of prismatic

actuators or sliding joints and inability to be used for distinct tasks requiring

different combinations of DoF. Thus a novel 3-DoF patial parallel manipulator,

Madras Parallel Manipulator MaPaMan) was conceived of, to overcome these two

problems to the extent possible. MaPaMan was designed as an improvement over

the existing 3-RPS manipulator. It has no prismatic actuators or joints and uses

three actuators of rotary type to generate its 3-DoF. An additional feature of Ma-

PaMan is that it can be mechanically reconfigured to produce roll, pitch and heave

motions or roll, pitch and yaw motions; which makes it versatile in applications.

An indepth kinematic analysis of both the configurations of MaPaMan has been

carried out and the claims w.r.t. the partitioning of DoF has been established. A

gain-type singularity analysis of MaPaMan-I has also been carried out to find out

the regions in the workspace where the manipulator loses controllability. It was

attempted to find out a singular manifold in the task-space, that can have impli-

cations in path planning; however the expression of the manifold turned out to be

very large to manipulate and study, hence the manifold was visualised numerically

with the help of contour plots. The contour plots were then used to find convex

regions for singularity free path planning.

Inorder to design a prototype of MaPaMan, the effect of its numerous design

parameters have to be studied. As there exist no unique performance metrics
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to compare two parallel manipualtors, certain new metrics were developed. The

variation of metric properties with change in the design parameters were studied

and the overall behaviour of the metrics themselves were visualised with the help

of a dynamic visualiser that was developed for this purpose. A genetic algorithm

based optimization framework was developed to find the best set of dimensions

for a desired range of motion of the platform, taking into account various con-

straints like singularities, joint limits, joint intersections etc. Based on this, two

prototypes of MaPaMan-I were designed and fabricated. The first prototype was a

skeletal model, built to exhibit the kinematic relations, while the second prototype

was provided with a number of sensors to detect possible errors due to backlash

of motor-gear, manufacturing inaccuracies etc. The three major design challenges

were the choice of design for rotary joints, the design of spherical joints and the de-

sign of the unit housing the sensors and coupling it with the links. The prototype-II

was developed to validate the control schemes developed for trajectory tracking

of MaPaMan-I, in concurrent studies by Mehta (2012). The prototype was then

developed into a motion simulation platform, wherein the end-effector would track

any trajectory that is given to it using a dual loop control scheme. The platform

was also controlled realtime using a joystick to demonstrate the capabilities of the

manipulator and illustrate the immense scope for its application in various fields.
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NOTATION

l0 Length of the ground link of a leg of MaPaMan.
l1 Length of the crank of a leg of MaPaMan.
l2 Length of the coupler of a leg of MaPaMan.
l3 Length of the rocker of a leg of MaPaMan.
r Length of the strut of a leg of MaPaMan.
dt Length of each side of triangular end-effector.
rt Circumradius of top of MaPaMan.
x1 Circumradius of base of MaPaMan.
m1 Mass of the crank of a leg of MaPaMan.
m2 Mass of the coupler of a leg of MaPaMan.
m3 Mass of the rocker of a leg of MaPaMan.
m4 Mass of the strut of a leg of MaPaMan.
m5 Mass of the end-effector.
θ Vector of all the active joint variables.
γ Vector of all the strut angles.
φ Vector of all the coupler angles.
ψ Vector of all the rocker angles.
q Vector of all the active and passive joint variables.
pc Pointer of the centre of the end-effector.
Jηθ Jacobian matrix, resulting from the partial derivative of η with respect to θ.
Jηγ Jacobian matrix, resulting from the partial derivative of η with respect to γ.
Jηq Jacobian matrix, resulting from the partial derivative of η with respect to q.
Jpcθ Jacobian matrix, resulting from the partial derivative of pc with respect to θ.
Jpcγ Jacobian matrix, resulting from the partial derivative of pc with respect to γ.
Jv Velocity Jacobian matrix.
Mθ Mass matrix in active variable space.
Cθ Matrix representing centripetal and Coriolis terms.
Gθ Vector representing gravity induced forces.
S(γ) Singularity function.
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CHAPTER 1

Background

1.1 Literature review

A mechanism that enables a rigid body under study,i.e. an “end-effector”, to move

in space in a desired fashion w.r.t. a fixed base can be called a manipulator. With

appropriate controls, a manipulator can be made into a robot, as suggested by

Hunt (1978) for the first time. A rigid body in space can have a maximum of

six degrees-of-freedom: three rotations and three translations. A robot controls

all DoF of the end-effector hence enabling it to achieve a desired position and

orientation. Robotic manipulators are broadly classified into three types: serial,

parallel and hybrid (Merlet, 2001). Serial manipulators consist of a series of links

connected in succession by one-DoF actuated joints. While serial robots have

the advantage of high dexterity and large works-paces for their size, they suffer

from drawbacks such as low precision and load carrying capacity, which are crit-

ical requirements in many applications. This is primarily due to a predominant

cantilevered architecture resembling a human arm. Parallel manipulators, on the

other hand, offer the advantages of high precision coupled with high load-carrying

capacity, albeit at the cost of smaller workspace volume and complex kinematic

formulations and singularities within the workspace. This is because a the end-

effector is connected to the base by a number of legs in a parallel fashion, sharing

the load at all points of time. The hybrid manipulators are compositions of serial

and parallel components.

1.1.1 Parallel manipulators

A parallel robot is made up of an end-effector with n-DoF, and of a fixed base,

linked together by at least two independent chains. Actuation takes place through



n actuators. They hence differ strikingly from serial robots. Parallel manipulators

due to the nature of their architecture, are highly precise and have greater stiffness

than their serial counterparts of similar dimensions. Also they have higher pay-

load to self-weight ratio which means they can carry greater payload as opposed

to their serial counterparts. However due to the presence of closed loops in the

geometry, they have lower workspace and encounter singularities which make it

difficult to control at certain instances even when within the workspace.

Therefore in applications requiring high precision and weight carrying capabilities,

parallel manipulators can fit in as better solutions. However when large workspace

is a requirement or very quick motion is needed at the output, serial robots are

generally the more preferred solution. Parallel manipulators are generally not very

fast as most of the designs contain prismatic actuators or passive sliding joints;

which are typically responsible for a lot of friction in the system. Manipulators

having only rotary, universal and(or) spherical joints in their mechanism usually

overcome this problem to a great deal. For example, the Delta robot (Clavel,

1988) inspite of its parallel architecture is faster than serial robots. The problem

of workspace or singularities is inherent to parallel manipulators and cannot be

overcome trivially. Typically a hybrid manipulator built using a parallel manipu-

lator at base followed by a serial arm is used to offer a solution that can act as a

compromise (Shahinpoor, 1992).

Lower mobility parallel manipulators

Parallel manipulators can have a maximum of 6-DoF and several manipulators

have been developed with 6-DoF, such as the famous Stewart platform manipu-

lator (Gough, 1940). However, in applications that require less than 6-DoF all

six actuators still need to be actuated and this results in higher operational cost

and complexity as well as higher cost of the manipulator (Li and Bone, 2001). To

overcome this, manipulators with lower mobility have received a lot of attention

from the research community in the past few decades.

Planar motions, translational motions, cylindrical motions and spherical motions

are important examples of motion tasks that require less than 6-DoF and are of-
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ten necessary in industrial applications. A classic example of a parallel robot with

lower mobility is the DELTA robot (Clavel, 1988). It is arguably the fastest 3-DoF

robot in the world. It has three translational DoF and is used widely in industries

for pick and place operations.

Another classic and widely known 3-DoF manipulator is the 3-RPS parallel plat-

form which was adopted as a micromanipulator (Lee and Shah, 1988). This ma-

nipulator has cylindrical motions and has been used for precision operations like

bracing and clamping (Johnson and Lee, 1989).

Agile Eye is a popular 3-DoF manipulator with spherical motions (Gosselin and

Hamel, 1994). It mimics motion of the eyes and has very simple closed-form kine-

matic solutions and also a large singularity free workspace. The shape of the links

however are a little too complicated to be machined to precision and hence this

manipulator never found much practical acceptance in general.

The CaPaMan is a 3-DoF parallel manipulator with cylindrical motions (Cecca-

relli, 1997). It has the advantage of actuation using rotary actuators placed at

the bottom and simple closed-form forward kinematics. However it suffers from

a serious draw-back due to the presence of passive sliding joints in the design.

These joints increase the friction in the system and also the cantilevered position

of the link containing the sliding joint reduces the load carrying capacity of the

manipulator.

The 3-UPU manipulator is one of the most well known parallel manipulator with

provision for reconfigurability(Gregorio, 2003)(Tsai, 1996). It can be mechanically

rearranged to obtain all three translation DoF or all three rotation DoF. Inspite

of this advantage of reconfigurability in the mechanism, this manipulator never

gained prominence as the configuration with all three rotations, requires a me-

chanical arrangement with a number of axis of joints intersecting at a point. This

kind of arrangement is very difficult to achieve in reality and it has been shown

that any error in rearrangement causes the manipulator to exist in a singular state

always with infinitesimal motion at all points.

3



1.1.2 Applications of parallel manipulators

• Parallel manipulators find application in flight simulators and automobile
simulators for example Inmotion simulations, SEG motion technologies etc.
are commercial ventures developing simulation solutions that are based on
the Stewart platform manipulator (SPM).

• Parallel manipulators due to the high precision that they possess are excel-
lent choice for photonics/optical fiber alignment.

• Even though the workspace is not very large, the inertia of moving parts
is low and precision is high in parallel manipulators. Hence they find use
in applications like surgical tool holders, antennæalignment systems and for
handling and assembly operations.

• Due to their fast motion capability and high payload to self-weight ratio
coupled with stiffness, they are used in high speed and high-precision milling
machines (Johnson and Lee, 1989).

• High stiffness and precision make parallel manipulator appropriate for ap-
plication in rehabilitation; example an ankle rehabilitation device developed
at Italian Institute of Technology use a redundant 3-RPS manipulator to
provide roll and pitch motion for ankle rehabilitation (Saglia Jody A. and
G., 2008).

1.1.3 Demerits of some of the existing 3-DoF parallel ma-

nipulators

The existing 3-DoF manipulator have two main demerits:

1. Limited to application-specific design: The lower mobility platform
manipulators cannot be used for distinct tasks which require different com-
binations of DoF. For instance, the DELTA is designed for only three trans-
lations along the X, Y, and Z axes (also known as surge, sway and heave
respectively) , while the 3-RPS can produce only rotations about two hor-
izontal axes (i.e., roll and pitch) and an independent translation about the
vertical axis (i.e., heave). Neither of these manipulators can be used where
three independent rotations (i.e., roll, pitch and yaw) are required. A manip-
ulator such as Agile Eye, on the other hand, provides these three rotations;
however, it cannot generate any translation.

2. Use prismatic/linear actuators: Most of these manipulators (e.g,3-RPS)
inherit the prismatic actuators from the Stewart-Gough platform or intro-
duce passive sliding joints in their structure (e.g, CaPaMan) which has sev-
eral drawbacks:
• Greater friction and design complexity inherent to passive sliding joints.
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• Bulkier, slower linear actuators (compared with similarly priced rotary
actuators).
• Lower payload-to-self-inertia (a measure of what it carries to what it

inherently weighs) ratio, as most often the linear actuators form the
legs of the manipulator, and thus need to be moved as the manipulator
moves the payload.

1.2 Motivation

Parallel manipulators have several advantages over their serial counterparts, yet

they are not widely used primarily because of the complexities in their design,

kinematics and controls. On top of this, most lower-mobility parallel manipula-

tors have prismatic actuators or passive sliding joints in them, which have the

drawbacks discussed above. Also most of the existing designs are application-

specific, which means they cannot readily be used for distinct tasks with different

combinations of DoF.

Hence an attempt has been made to develop a novel design of a 3-DoF spatial

parallel manipulator that has rotary actuators, and joints of rotary and spherical

types only. In addition the manipulator can be mechanically reconfigured to two

distinct configurations having different combinations of 3-DoF, which make the

manipulator versatile and increase the scope for applications in various fields.

1.3 Objectives

The end objective is to design a novel 3-DoF manipulator, analyse and compare

various features of this manipulator with existing manipulators and then develop

a physical prototype to demonstrate some of these features. A number of inter-

mediate objectives that are achieved to realise the final objective are:

• To develop kinematic formulations for the manipulator and establish the
claims regarding DoF and reconfigurability.

• To perform singularity analysis in order to find out workspace limitations
and singular regions.
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• To study effect of variation of various design parameters on the performance
indices of the manipulator.

• To design and fabricate a prototype of the manipulator based on certain
design requirements.

1.4 Organisation of the thesis

This project has been organised into nine chapters. We present the conceptual-

isation of the design in Chapter 2. It is discussed as to how the MaPaMan was

conceived of as an improvement of the 3-RPS manipulator. The various features

of the new manipulator are highlighted and the terminologies associated with the

new architecture are introduced here. In Chapter 3, we present the kinematic

formulations for both the reconfigurable architectures of MaPaMan. A complete

analytical analysis has been carried out to find out zeroth-order relationships be-

tween the active joint inputs and end-effector pose. The DoF of both MaPaMan-I

and MaPaMan-II have been characterised and the partitioning into rotations and

translations is established. Armed with the DoF information, a first-order kine-

matic analysis is carried out. In addition to this a new approach to faster forward

kinematics is presented. This approach is numerical in nature but has implica-

tions in realtime control of the manipulator. We also present numerical examples

to illustrate the mathematical procedures followed all throughout the Chapter.

Chapter 4 discusses the singularities of MaPaMan-I. Contour plots are presented

to help visualise the gain-type singularities in the manipulator. Dynamic formula-

tion is briefly presented in Chapter 5 1. The effect of variation of design parameters

on the performance of the manipulator is discussed in detail in Chapter 6. As there

exists no “unique” metrics in literature as per our knowledge; certain new metrics

are conceived of and presented in detail. Using a number of plots, the effect of

design variables is studied on these metrics. A dynamic visualiser is developed to

findout the overall nature of the variation in the metrics w.r.t. input angles upon

varying the design parameters. A genetic algorithm based optimization frame-
1Dynamic formulation is discussed in detail in a concurrent study carried out by Mehta

(refthesis)
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work was developed to find out the best set of dimensions required to obtain a

manipulator with desired range of motion, when considering various constraints

like, joint intersections, singularitites etc.

In Chapter 7 we present the design and fabrication of two prototypes of MaPaMan-I.

Design and manufacturing details of each component is presented in this Chap-

ter. The details of the electronic components and software used is also presented.

Chapter 8 deals with the details of interfacing the prototype with a joystick and an

inertial measurement unit (IMU) to simulate offline trajectories as well as mimic

realtime motions to demonstrate the accuracy and motion capabilities of the ma-

nipulator. In the final Chapter we conclude the research work and discuss the

scope for furthering this work.
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CHAPTER 2

Conceptual design

2.1 Introduction

The Madras Parallel Manipulator (MaPaMan) is a novel 3-DoF parallel manipu-

lator that has been designed as an improvement over the widely studied 3-RPS

parallel manipulator. It is not as close to the CaPaMan in design as much as its

name is; however it draws some of its design inspirations from the same. Ma-

PaMan utilises rotary actuators, and joints of rotary and spherical types only,

without the need for a linear actuator or a passive prismatic joint. Rotary ac-

tuators are fixed at the stationary base of the manipulator, for easy replacement

and also so as not to add their weight to the moving mass of the manipulator.

It is readily reconfigurable to produce either roll-pitch-heave or roll-pitch-yaw by

means of a simple change (in less than one minute) in its link arrangements.

2.2 Design evolution

Figure 2.1: Evolution of MaPaMan from 3-RPS

The 3-RPS is a well-known parallel manipulator with 3-DoF and was reported

by Lee and Shah in 1988. The degrees-of-freedom it possesses are roll, pitch



and heave. MaPaMan was designed as a design improvement over the 3-RPS

manipulator. The design evolved from the 3-RPS manipulator in a stage by stage

process as shown in Fig. 2.1. The stages of evolution are described as follows:

• Each leg of the 3-RPS manipulator has a revolute joint at the base, followed
by a prismatic actuator and a spherical joint ending up at the end-effector
as shown in Fig. 2.1(a).

• Prismatic actuators are typically slow and expensive. In order to avoid
their presence in the design and still obtain the same kind of motion, a new
mechanism was conceived of, wherein the prismatic actuators in each leg
were replaced by two links connected by a revolute joint (see Fig. 2.1(b)).
One revolute joint at the base in each leg were then actuated, to result in
a mechanism with the same DoF as the 3-RPS nevertheless without the
prismatic actuators or joints.

• The ground link was then replaced with a four-bar mechanism as shown in
Fig. 2.1(c) . This was done because, a small force given at the crank gets
magnified to a larger force at the rocker (e.g. Norton, 1999), hence improving
the mechanical advantage of the mechanism.

• The link connected to the spherical joint at one end was then connected to
a point on the coupler of the four-bar instead of the rocker at the other end.
This link shall be henceforth referred to as the “strut ”. This was done so
that the load carried by the strut could be distributed over to the crank and
the rocker as opposed to the rocker taking all the load. The arrangement
as shown in Fig. 2.1(d) offers greater stiffness to the manipulator in the
predominant loading direction, i.e., the vertical.

• It was observed that if the strut is moved perpendicular to the plane of
the four-bar, the 3-DoF change from roll, pitch and heave to roll, pitch and
yaw. This reconfigurability is a novel feature not present in most parallel
manipulators.

Thus MaPaMan was conceptualised as a manipulator with reduced friction,

higher stiffness and reconfigurability.

2.3 Detailed architecture

The MaPaMan has three legs connected to an end-effector, which is in the form

of a rigid triangle. Each leg mechanism of the manipulator consists of a four-bar

attached to the fixed base (see Fig. 2.2), whose coupler (l2) carries a revolute

9



(a) MaPaMan-I

(b) MaPaMan-II

Figure 2.2: The two reconfigurable architectures of MaPaMan

joint (b2), a strut (r) and a spherical joint (p), which connects the leg with the

end-effector. The four-bars in each leg in turn are actuated by a motor located at

a1. The axis of the revolute joint (b2) is on a plane perpendicular to the plane of

the four-bar. The three leg mechanisms are arranged such that the angle between

any two is 120◦, and the vertical planes containing them intersect at the Z-axis

passing through the origin of the base plate.

The orientation of the axis of rotation of the strut w.r.t. the coupler can be

varied and locked at two discrete positions (see Fig. 2.3). If the axis of the

revolute joint is perpendicular to the plane of the four-bar and parallel to the

10



(a) Geometry of the strut and coupler (b) MaPaMan-I configura-
tion

(c) MaPaMan-II configuration

Figure 2.3: Reconfigurable joint between the strut and the coupler

axis of the crank (l1) as shown in Fig. 2.2(b), then the MaPaMan-I configuration

with roll-pitch-heave DoF is obtained. If, on the other hand, the four-bar is a

parallelogram linkage and the axis of revolute joint is perpendicular to the plane

of the parallelogram and perpendicular to the axis of the crank (see Fig.2.2(b)),

then the roll-pitch-yaw capable MaPaMan-II is obtained.

MaPaMan has 3 spherical joints, 12 rotary joints and 3 rotary actuators that

by their geometrical construction ensure that the end-effector achieves different

combinations of roll, pitch, yaw and heave (a total of three at a time). In addition,

the manipulator has 7 design variables (length of crank, rocker, coupler, base,

strut, top plate and position of the strut on the coupler) that can be varied suitably,

thus broadening the scope of finding the most suitable manipulator for a given

task, without changing the basic architecture.
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2.4 Design features

The following are the key features of this manipulator:

• The manipulator has 3 rotary actuators, all located on the fixed base. This
gives us the flexibility to change the actuators as per requirement without
affecting the rest of the manipulator.

• As the motors remain stationary on the ground at all points of time, its
inertial properties do not feature in the dynamics of the mechanism. Thus
the ratio of moving inertia of the payload to that of the manipulator is high.
An analysis has been carried out to verify this claim and is presented in
Section 6.2.2.

• The manipulator can be easily reconfigured to get two different types of
3-DoF motions at the end-effector, by changing the axis of rotation of the
rotary joint at the strut. Reconfigurability by just mechanically changing
the orientation of a link is a huge advantage for the end-user as different
types of motions can be obtained from the same device which would be very
difficult to achieve otherwise. This versatility of the manipulator widens its
scope for various applications.

• The four-bars at the base of the manipulator increase the stiffness of the
overall mechanism and provide a mechanical advantage. They also provide
us with the option of playing with a number of design variables (such as
option of varying crank length, coupler length, rocker length etc), which
are not available in the conventional 3-RPS manipulator. This broadens the
scope of specialization for a variety of applications. A detailed study of effect
of variation of different design variables on the properties of the manipulator
have been illustrated in Section 6

2.5 Conclusion

In this Chapter we have presented the details of the conceptual design of a new

3-DoF spatial parallel manipulator, MaPaMan. The evolution of the manipulator

from the design of an existing manipulator has been explained. The various termi-

nologies associated with the new manipulator that would be used throughout this

project has been introduced here. The various design features of this manipulator

have been presented. These features are analysed in detail and many of the claims

w.r.t. DoF and reconfigurability have been established in subsequent Chapters.
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CHAPTER 3

Kinematics

3.1 Introduction

In this Chapter first a zeroth-order kinematic analysis is carried out for MaPaMan-I.

Zeroth-order kinematics gives the relationship between the values of the active

variables and the pose of the end-effector. This is studied under two main cate-

gories: the forward and the inverse kinematics. Following that a characterisation

of DoF is carried out to establish that roll, pitch and heave are the degrees-of-

freedom of the MaPaMan-I. Finally a first-order kinematic analysis is carried

out. First-order kinematics gives the relationship between active joint rates and

velocity of the end-effector. The entire exercise is then repeated for MaPaMan-II.

3.2 Zeroth-order kinematics of MaPaMan-I

This section deals with the zeroth-order kinematics of MaPaMan-I. Firstly forward

kinematic formulations are developed, followed by an example to illustrate the

scheme. Following this, inverse kinematic formulations are presented along with

an example showing the various inverse kinematic configurations possible. Finally

a geometric implication of MaPaMan-I is presented which acts as a precursor to

the discussions presented in Section 3.4.2.

3.2.1 Forward kinematics

Given the values of the active variables, the process of finding the pose of the end-

effector is called forward kinematics. Forward kinematics of parallel manipulators

are generally more complicated to analyse as opposed to serial manipulators due



to the presence of closed loops in the architecture of the former. In the case of

manipulators like Agile Eye, the geometry explicitly gives us the pose of the end-

effector given the active joint positions Gosselin and Hamel (1994); however, in

the case of more complicated manipulators, this approach can be very difficult

or even impossible. In such cases, the forward kinematics problem is solved by

constructing the loop-closure equations and solving them to finally obtain the pose

of the end-effector (Ghosal, 2006). This is the approach adopted for MaPaMan-I.

The variables defining the kinematics of MaPaMan-I are shown in Fig. 3.1. These

a2   2       2(x  , z  ) a1   1       1   (x  , z  )

b3

l3
l2

r1

b1 l1

b2

p
1

θ

γ

ψ

φ

Z

X

1

1

1
1

O

Figure 3.1: Kinematic diagram of a leg of MaPaMan-I

are grouped in two sets: the active variables attached to the actuated links given

by

θ = (θ1, θ2, θ3)T , (3.2.1)

and the non-actuated or passive variables given by

φ = (φ1, φ2, φ3)T , (3.2.2)

ψ = (ψ1, ψ2, ψ3)T , (3.2.3)

γ = (γ1, γ2, γ3)T . (3.2.4)

14



The global reference frame is placed such that the XZ plane coincides with the

plane of first four-bar as shown in Fig. 3.1. The strut is placed at point b2 on the

coupler such that ‖b1 − b2‖ = nl2.

The coordinates of p1 on the first leg are found in terms of the active variable θ1

and passive variables φ1, ψ1 and γ1:

p1 =


l1 cos θ1 + nl2 cosψ1 + r cos γ1 + x1

0

l1 sin θ1 + nl2 sinψ1 + r sin γ1 + z1

 (3.2.5)

Making use of the symmetry in the geometry of the architecture, the coordinates

of p2 are found by rotating the plane of the corresponding four-bar by 120◦ CCW

about Z axis (by using Rz(φ)1), so that it now coincides with the XZ plane; and

the coordinates are found by a procedure similar to that used for finding p1 and

then rotated back by 120◦ about Z axis.

p2 = Rz

(2π
3

)

l1 cos θ2 + nl2 cosψ2 + r cos γ2 + x1

0

l1 sin θ2 + nl2 sinψ2 + r sin γ2 + z1



=


1
2(−l1 cos θ2 − nl2 cosψ2 − r cos γ2 − x1)
√

3
2 (l1 cos θ2 + nl2 cosψ2 + r cos γ2 + x1)

l1 sin θ2 + nl2 sinψ2 + r sin γ2 + z1

 (3.2.6)

1Rz(φ) =

cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 is the rotation matrix for CCW rotation about Z axis through

an angle φ
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The same process is repeated for finding p3; leading to:

p3 = Rz

(
4π
3

)
l1 cos θ3 + nl2 cosψ3 + r cos γ3 + x1

0

l1 sin θ3 + nl2 sinψ3 + r sin γ3 + z1



=


1
2(−l1 cos θ3 − nl2 cosψ3 − r cos γ3 − x1)

−
√

3
2 (l1 cos θ3 + nl2 cosψ3 + r cos γ3 + x1)

l1 sin θ3 + nl2 sinψ3 + r sin γ3 + z1

 (3.2.7)

The points p1, p2 and p3 form the three vertices of an equilateral triangle of side

d and hence, they satisfy the geometric constraints:

η1
4= (p1 − p2) · (p1 − p2)− d2

t = 0 (3.2.8)

η2
4= (p2 − p3) · (p2 − p3)− d2

t = 0 (3.2.9)

η3
4= (p3 − p1) · (p3 − p1)− d2

t = 0 (3.2.10)

These equations are also called the loop-closure equations, denoted by:

η = (η1, η2, η3)T = 0. (3.2.11)

The kinematics of each four-bar is independent of the motion in the rest of the

l2

l3 l1

l0

O X

Y

1A

3

b’
3

A2

θ1

b
b

1

ψ
1

3φ

Figure 3.2: The two branches of solutions in a four-bar
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mechanism and this property is utilised by solving the kinematics of the four-bar

first, and then solving for the position of the strut and finally the end-effector.

In the four-bars, the passive links have two distinct configurations for any given

input as shown in Fig. 3.2. From geometry, we find two possible values for ψ1 and

φ1 in terms of θ1. While both the solutions we obtain for the four-bar are valid,

we choose the elbow up configuration due to physical constraints and obtain ψi

and φi as:

ψi = arccos
(
l22 + l24i − l

2
3

2l2l4i

)
+ arccos

(
l21 + l24i − l

2
0

2l1l4i

)
+ θi − π (3.2.12)

φi = π − arccos
(
l20 + l24i − l

2
1

2l0l4i

)
− arccos

(
l23 + l24i − l

2
2

2l3l4i

)
,where (3.2.13)

l4i =
√
l20 + l21 − 2l1l0 cos θi, i = 1, 2, 3. (3.2.14)

All the passive variables have been explicitly obtained in terms of active variables

but for γ. Two approaches can be adopted to find γ:

1. Substitute all the numerical values of the known variables and then ob-
tain solutions for the unknown variables using some numerical solver (e.g.
G. Aguirre and Ottaviano, 2003).

2. Continue with the symbolic expressions and systematically eliminate un-
known variables to finally end up in a univariate expression which can then be
solved either analytically or numerically depending on the case (e.g. Husty,
1994).

The major drawback of the former approach is that it is not always guaranteed

to yield solutions in all the cases. Sometimes the equations need to be simplified

further or a few variables need to be eliminated before the numerical scheme be-

comes feasible. Also, numerical solvers typically introduce numerical inaccuracies

in the solutions. The second approach, however, provides more accurate results

and in some cases exact analytical solutions (e.g. Ghosal, 2006). Most of the times

we end up in an analytical expression of a univariate polynomial, which is then

solved to obtain the roots. Even if numerical root finding is applied at the fi-

nal stage, the solutions are better than the first approach, as the coefficients are

computed analytically and all the solutions are obtained. Sometimes the second

method results in more solutions than expected as the elimination process can
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introduce spurious roots (Cox et al., 1991). These need to be taken care of on

a case by case basis after all the roots have been obtained. A simple way to do

this is to check all the solutions against the original loop-closure constraints, i.e,

Eq.3.2.11.

An elimination scheme is developed to solve for γ from η as depicted in the

following schematic:

η1(θ1, θ2, γ1, γ2) = 0

η3(θ3, θ1, γ3, γ1) = 0

 ×γ1−→ η4(θ, γ2, γ3) = 0⇒ η6(θ, t2, t3) = 0

η2(θ2, θ3, γ2, γ3) = 0⇒ η5(θ2, θ3, t2, t3) = 0


×t2−→ η7(θ, t3) = 0

(3.2.15)

The functions η1 and η3 are both found to be linear in cos γ1 and sin γ1. Eq.

(3.2.8), is of the form η1 = A1 cos γ1 + B1 sin γ1 + C1 = 0 and Eq. (3.2.10) is of

the form η2 = A2 cos γ1 +B2 sin γ1 +C2 = 0. Solving for the sine and cosine of γ1

linearly form these equations, we get

cos γ1 = |BC|
|AB|

, sin γ1 = |CA|
|AB|

,where (3.2.16)

|BC| = (B1C2 −B2C1),

|AB| = (A1B2 − A2B1),

|CA| = (C1A2 − C2A1).

Assuming |AB| 6= 0,

γ1 = atan2(sin γ1, cos γ1) (3.2.17)

where atan2(sin(·), cos(·)) represents the two-argument arc-tangent function.

Using the identity cos2 γ1 + sin2 γ1 − 1 = 0 and Eq. (3.2.16)), we eliminate γ1

to obtain a new equation η4(θ, γ2, γ3) = 0. The equations η2 = 0 and η4 = 0

are both trigonometric in γ2 and γ3. At first an elimination strategy was followed

that involved elimination of sin γ2 and cos γ2 simultaneously from η2 and η4 and
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then finally obtaining a univariate equation in γ3. Upon converting into algebraic

equations by substituting the trigonometric terms, cos γ3 and sin γ3 as follows (see,

Ghosal (2006)):

cos γ3 = 1− t23
1 + t23

, sin γ3 = 2t3
1 + t23

, t3 = tan
(
γ3

2

)
, (3.2.18)

we obtain a 20 degree polynomial in t3 after rationalisation. However numerical

computations reveal that out of the 20 roots, 4 roots never lead to any physically

meaningful solution. These roots arise due to the spurious factors that creep in

at some stages of the elimination of the variables (Cox et al., 1991). Hence an

alternate strategy was developed to obtain a lower-degree univariate polynomial.

The functions η2 and η4 were converted to algebraic functions η5 and η6 by using

t2 = tan γ2
2 . The function η5 is of the form A1t

2
2 +B1t2 +C1 and η6 is of the form

A2t
4
2 +B2t

3
2 + C2t

2
2 +D2t2 + E2.

A typical approach that could be followed at this stage was to compute the re-

sultant of the two polynomials w.r.t. t2. However as we know the nature of the

polynomials a priori, a faster way of solving the equations is employed. Treating

η6 and η5 as polynomials in t2 and dividing η6 by η5 yields a remainder that is at

the most linear in t2 as η5 is quadratic in t2. Further the remainder must vanish

when η5 = 0 and η6 = 0. Thus,

Remainder(η6, η5, t2) = A3t2 +B3 = 0⇒ t2 = −B3

A3
(3.2.19)

⇒ γ2 = 2 atan2(−A3, B3). (3.2.20)

Substituting t2 obtained from Eq. (3.2.19) in η5, we eliminate t2 and obtain a

new equation unknown only in γ3:

η7
4= A1A

2
3 +B1A3B3 + C1B

2
3 = 0 (3.2.21)

Converting to the algebraic form using t3 = tan γ3
2 . It is found that this equation

is a polynomial in t3 of order 16. The polynomial is 50MB in size2, but upon
2Size refers to the number of bytes used internally by Mathematica. Note that 34KB is

approximately equal to the amount of text in one A4 size page
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simplification we obtain an expression 2MB in size. Note that all computations

were done symbolically upto this point using the symbolic computation software

Mathematica. As analytical solution cannot be found for general polynomials of

degree greater than 4, roots of this polynomial equation are obtained numerically

at this point. The real solutions are chosen and the others are discarded. After

having found t3, γ3 is found as

γ3 = 2 arctan(t3). (3.2.22)

Having computed γ3, γ2 is obtained from Eq. (3.2.20) and γ1 is obtained from

Eq. (3.2.17).

The formulation is illustrated with the help of a numerical example3. The values

of inputs (θ1 = 0.8, θ2 = 1.4, θ3 = 1.1), and all link length parameters (l0=100,

l1=75, l2=100, l3=75, n=0.5, r=100, dt=160
√

3) are substituted. At the base,

coordinates of a1 and a2 are (150, 0, 0)T and (50, 0, 0)T respectively. Substitution

of all the numbers in Eq. 3.2.21 leads to:

6.434t163 − 3.073t153 − 175.644t14
3 + 3.572t13

3 − 613.29t12
3 + 87.625t11

3 + 1682.99t10
3 + 71.051t93

+ 4652.29t83 − 410.957t73 − 6825.14t63 − 319.268t53 − 10128.1t43 + 620.877t33

+ 11828.1t23 + 153.542t3 + 1561.43 = 0 (3.2.23)

Solving Eq. 3.2.23 for t3 using “NSolve” in Mathematica, we get the following

values of t3

− 5.292,−1.285,−1.261,−1.224,−0.015± 1.558i,−0.003± 0.347i,

0.005± 1.588i, 0.011± 1.617i, 1.212, 1.255, 1.377, 5.702

Complex values of t3 are naturally ignored and so are the negative real values as

they do not represent physically meaningful configurations. The feasible values

of t3 are 1.212, 1.255, 1.377, 5.702, for which the corresponding γ3 obtained are

1.762, 1.796, 1.885, 2.794 respectively.
3All values of angles are in radians and all lengths are in mm in this report unless mentioned

otherwise explicitly
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Following this, Eq. (3.2.20) and Eq. (3.2.17) are used to obtain γ2 and γ1.

It is observed that except for γ3 = 1.762, γ2 and γ1 values obtained for other

values of γ3 are either negative or complex. Hence γ3 = 1.762 is chosen and the

corresponding values of γ2 = 1.605 and γ1 = 2.004 obtained.

Solving for φi and ψi (i = 1, 2 and 3) from Eq. (3.2.12) and Eq. (3.2.13)

yields φ1 = 0.8, φ2 = 1.4, φ3 = 1.1, ψ1 = 3.141, ψ2 = 3.141, ψ3 = 3.141.

A validation of the numerical solution is carried out by substituting the values of

passive variables into the Eq. 3.2.11 . On substituting the values of γ, φ and ψ

into η we get the residues as:

η = (−4.667,−0.354,−4.470)T × 10−11 (3.2.24)

Substituting all the passive variables to obtain pi (i = 1, 2 and 3) results in:

p1 =


108.178

0

149.103

 , p2 =


−54.562

94.504

178.846

 , p3 =


−55.296

−95.775

169.193

 (3.2.25)

This completes the forward position analysis of MaPaMan-I.

Figure 3.3: The pose of MaPaMan-I corresponding to the θ = (0.8, 1.4, 1.1)T
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3.2.2 Inverse kinematics

In the inverse kinematic problem, the orientation and position of the end-effector

are known and the actuator angles that produce the specified pose of the end-

effector are computed. The coordinates of p1, p2 and p3 are known and θ1 needs

to be computed. From Fig.3.1,

b2 =


l1 cos θ1 + nl2 cosψ1 + x1

0

l1 sin θ1 + nl2 sinψ1 + z1

 (3.2.26)

The distance between p1 and b2 is r, i.e.,

f1
4= (p1 − b2) · (p1 − b2)− r2 = 0 (3.2.27)

Upon simplification, we obtain Eq.3.2.27 to be linear in terms of cosψ1 and sinψ1.

Eq. (3.2.10) that was obtained in Section.3.2.1 is also an equation linear in cosψ1

and sinψ1. Eq. (3.2.10) and Eq. (3.2.27) are used simultaneously to eliminate

ψ1 and to obtain an equation f2 = 0 purely in terms of θ1.

As the function f2 is trigonometric in θ1, it is converted into an algebraic equation

as shown in Eq. (3.2.18) to obtain f3 = 0 as a polynomial equation in terms of

variable t1, where

t1 = tan
(
θ1

2

)
. (3.2.28)

The function f3 turns out to be a univariate polynomial in t1 of degree 8. This

polynomial is then solved numerically using the software Mathematica to obtain 8

roots for t1. The real solutions are chosen and one feasible branch of the solution

is selected.

The point p2 is rotated by 120◦ CCW about Z axis to bring it to the XZ plane.

After that the same procedure as that used for finding θ1, is adopted to find θ2.

Similarly θ3 is computed from p3.
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As an example, the same link lengths and position of pi (i=1,2 and 3) are taken

as in Section3.2.1.

p1 =


108.178

0

149.103

 , p2 =


−54.562

94.504

178.846

 , p3 =


−55.296

−95.775

169.193

 (3.2.29)

On solving for the actuator angles as described above, the following values are

obtained.

θ1 = 0.8, 2.232 (3.2.30)

θ2 = 1.4, 1.639 (3.2.31)

θ3 = 1.1, 1.916 (3.2.32)

A total of 8 different combinations of input angles can result in the same pose

as shown in Fig. 3.4. The inputs that were chosen in the section on forward

kinematics was θ1 = 0.8, θ2 = 1.4 and θ3= 1.1, which is clearly a subset of what

is obtained (see Fig.3.4(a)).
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(a) The pose of MaPaMan-I corre-
sponding to θ = (0.8, 1.4, 1.1)T

(b) The pose of MaPaMan-I corre-
sponding to θ = (0.8, 1.4, 1.916)T

(c) The pose of MaPaMan-I corre-
sponding to θ = (0.8, 1.639, 1.1)T

(d) The pose of MaPaMan-I corre-
sponding to θ = (0.8, 1.639, 1.916)T

(e) The pose of MaPaMan-I corre-
sponding to θ = (2.232, 1.4, 1.1)T

(f) The pose of MaPaMan-I corre-
sponding to θ = (2.232, 1.4, 1.916)T

(g) The pose of MaPaMan-I corre-
sponding to θ = (2.232, 1.639, 1.916)T

(h) The pose of MaPaMan-I corre-
sponding to θ = (2.232, 1.639, 1.1)T

Figure 3.4: Eight inverse kinematic configurations of MaPaMan-I
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3.3 Geometrical implication of the architecture

of MaPaMan-I

An interesting observation is made at this point, which arises purely from the

geometry of the architecture. We represent the orientation of the end-effector

in terms of Rodrigue’s parameters c1, c2, c3 (e.g. Selig, 1996) and represent the

position of its centroid pc using (xc, yc, zc). Rodrigue’s parameters were used as

they are algebraic in nature as opposed to the trigonometric Euler angles. By def-

inition, Rodrigue’s parameters (c1, c2, c3) = (kx tan φ
2 , ky tan φ

2 , kz tan φ
2 , ); where

(kx, ky, kz) is the unit vector representing the instantaneous axis of rotation and

φ is the instantaneous tilt about that axis.

MaPaMan-I is a 3-DoF manipulator and hence we should require only three pa-

rameters at any point to describe the pose of the end-effector. Thus we attempt

to find the relationship between c1, c2, c3, xc, yc, zc. The coordinates of the end-

effector is found in a frame fixed to itself with the origin at its centroid, normal

oriented with the Z-axis and the X-axis oriented along p1:

p1 =


rt

0

0

 , p2 = Rz

(2π
3

)
p1 =


− rt

2
√

3rt
2

0

 , p3 = Rz

(
4π
3

)
p1 =


− rt

2

−
√

3rt
2

0


(3.3.1)

The transformed coordinates of the end-effector can be written as:

pit = Rpi + pc, (3.3.2)

where, R is the rotation matrix in terms of c1, c2, c3 defined as

R = 1
1 + c21 + c22 + c23


c21 − c22 − c23 + 1 2c1c2 − 2c3 2 (c2 + c1c3)

2 (c1c2 + c3) 1− c21 + c22 − c23 −2 (c1 − c2c3)

2 (c1c3 − c2) 2 (c1 + c2c3) 1− c21 − c22 + c23


(3.3.3)
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The transformed coordinates obtained are,

p1t = 1
c∆


(c21 − c22 − c23 + 1) rt + (1 + c21 + c22 + c23)xc

2 (c1c2 + c3) rt + (1 + c21 + c22 + c23) yc
2 (c1c3 − c2) rt + (1 + c21 + c22 + c23) zc

 (3.3.4)

p2t = 1
c∆


rt
2

(√
3 (2c1c2 − 2c3)− (c21 − c22 − c23 + 1)

)
+ (1 + c21 + c22 + c23)xc

rt
2

(
−2 (c1c2 + c3) +

√
3 (−c21 + c22 − c23 + 1)

)
+ (1 + c21 + c22 + c23) yc

rt
(
− (c1c3 − c2) +

√
3 (c1 + c2c3)

)
+ (1 + c21 + c22 + c23) zc


(3.3.5)

p3t = 1
c∆


− rt

2

(√
3 (2c1c2 − 2c3) + (c21 − c22 − c23 + 1)

)
+ (1 + c21 + c22 + c23)xc

− rt
2

(
2 (c1c2 + c3) +

√
3 (−c21 + c22 − c23 + 1)

)
+ (1 + c21 + c22 + c23) yc

−rt
(
(c1c3 − c2) +

√
3 (c1 + c2c3)

)
+ (1 + c21 + c22 + c23) zc

 ,
(3.3.6)

where c∆ = (1 + c21 + c22 + c23).

From the geometry of the manipulator, p1 is constrained to move in the XZ plane

(see Fig. 3.1),i.e., its y-coordinate must be zero. Hence

f1
4= (p1t · ey) = 0, where ey = (0, 1, 0)T . (3.3.7)

Similarly p2 and p3 are constrained to move in their respective planes, hence

f2
4=
(
Rz

(−2π
3

)
p2t

)
· ey = 0, (3.3.8)

f3
4=
(
Rz

(
−4π

3

)
p3t

)
· ey = 0, (3.3.9)
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Upon simplification we obtain,

f1
4= 2c2c1rt + 2c3rt + c21yc + c22yc + c23yc + yc = 0 (3.3.10)

f2
4=
√

3c21rt − 2c2c1rt −
√

3c22rt + 4c3rt −
√

3c21xc

−
√

3c22xc −
√

3c23xc −
√

3xc − c21yc − c22yc − c23yc − yc = 0 (3.3.11)

f3
4= −
√

3c21rt − 2c2c1rt +
√

3c22rt + 4c3rt +
√

3c21xc

+
√

3c22xc +
√

3c23xc +
√

3xc − c21yc − c22yc − c23yc − yc = 0 (3.3.12)

The function f1 is linear in yc and hence we obtain from Eq.3.3.7 yc = −2(c1c2rt+c3rt)
1+c2

1+c2
2+c2

3
.

Note that the denominator of yc is always non-zero. The value of yc obtained is

substituted in Eq.3.3.8 and Eq.3.3.9 to obtain f4 = 0 and f5 = 0. Upon per-

forming f4 + f5, we obtain 12c3rt = 0. This implies c3 = 0, which further leads

to:

yc = − 2c1c2rt
1 + c21 + c22

. (3.3.13)

Substituting c3 = 0 in f4 = 0 and solving for xc, we obtain:

xc = rt
c21 − c22

1 + c21 + c22
. (3.3.14)

We observe that at all instances c3 = 0 implying kz = 0. Therefore at any

moment, the instantaneous axis of rotation cannot have a component along the

Z axis; thus it cannot exhibit yaw motion. Position coordinates xc and yc have

been obtained explicitly in terms of c1 and c2, but zc is still independent. Hence

using the geometry of the manipulator, we have been able to explicitly find out a

relationship between xc, yc and c1, c2. Also we were able to establish that c3 = 0

and zc is independent of all other parameters. This result is quite fascinating as

the geometry directly hints at the fact that MaPaMan-I has two rotation DoF

and one translation DoF about Z-axis(A claim that is validated in Section.3.4.2).

Thus this analysis shows that the 3-dimensional task-space of MaPaMan-I can be

explicitly parameterised in terms of rts = (c1, c2, zc)T .
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3.4 First-order kinematics of MaPaMan-I

First-order kinematics deals with finding the relationships between active joint

rates and the end-effector velocities. Given the active joint rates finding out the

end-effector velocity is called the first-order forward kinematics. Computing the

active joint rates given the end-effector velocity is called first-order inverse kine-

matics.

3.4.1 Forward kinematics

The end-effector has linear as well as angular velocities given by vc and ω. The

linear velocity is computed as follows:

dη(q)
dt

= 0,vc = dpc
dt

= ∂pc
∂θ
θ̇ (3.4.1)

= Jvθ̇, where Jv = ∂pc
∂θ

. (3.4.2)

The coordinates of the centroid of the end-effector pc = 1
3 (p1 + p2 + p3). The

points pi, i=1, 2, 3 are obtained in Eq.3.2.5, Eq.3.2.6 and Eq.3.2.7.

In order to compute the angular velocity, we first find out the rotation matrix of

the end-effector in a space fixed reference frame:

R =
(
X

∣∣∣∣Y ∣∣∣∣ Z) (3.4.3)

where, X = p1−p2
‖p1−p2‖

, Z = (p1−p2)×(p1−p3)
‖(p1−p2)×(p1−p3)‖ and Y = Z ×X. The angular velocity

of the end-effector ω is obtained as follows:

Ω = ṘRT , (3.4.4)

Ω =


0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

 (3.4.5)

The matrix Ω is skew-symmetric and the corresponding vector obtained from it is

ω = (ωx, ωy, ωz)T (Ghosal, 2006). Once we obtain ω, we extract Jω from it such
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that:

ω = Jω.θ̇ (3.4.6)

The Jacobian matrix Jω is called the angular velocity Jacobian of the end-effector.

Thus given the rates of motion of the actuators, we can compute the linear and

angular velocities of the end-effector.

3.4.2 Characterising the degree-of-freedom of MaPaMan-I

In this section, we validate the fact that MaPaMan-I has roll, pitch and heave

DoF. Bandyopadhyay (2009) presented a partitioning of DoF based on the first-

order properties of motion. The same approach is followed here to establish the

nature of DoF of MaPaMan-I. A rigid body in space typically has 6-DoF; of

which 3 are rotations (roll, pitch and yaw) and 3 are translations (surge, sway

and heave). When a manipulator has lower mobility, for example 3-DoF, it could

be a combination of 2 rotations and 1 translation (2R-1T), or 1 rotation and 2

translations (1R-2T) or all 3 rotations (3R-0T) or all 3 translations(0R-3T). To

find out the partitions of the DoF in a manipulator, we need to find out the

ranks of two matrices g and gV . These matrices themselves are defined as follows

(Bandyopadhyay, 2009):

g = JTωJω

gV = JTV JV , JV = JvX,

where

XεNull(g).

Note that Jv and Jω are velocity Jacobian matrices defined in Section 3.4.1.

For the sake of illustration, we take the configuration of MaPaMan-I given in Table
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B.1. For θ = (0.8, 1.4, 1.1)T , we obtain the following:

Jv =


0.042 −0.002 −0.021

0.014 −0.008 0.017

0.275 0.049 0.156

 ,

Jω =


0.510 −0.050 −0.163

0.001 0.079 −0.256

−0.013 −0.005 0.024

 ,

g =


0.261 −0.025 −0.084

−0.025 0.009 −0.012

−0.084 −0.012 0.093

 ,

Null(g) =


0.186

0.938

0.291


gv = 0.02

The rank of g turns out to be 2 and the rank of gv is 1, hence validating the 2R-1T

nature of MaPaMan-I.

Though this method tells us that MaPaMan-I has 2R-1T DoF, it still does not

provide any information as to which among roll, pitch and yaw form a part of the

2R DoF and which among surge, sway and heave form the 1T DoF. However the

geometrical analysis carried out in Section 3.3 established that no yaw motion is

possible, hence the 2R DoF have to be roll and pitch. We also observed that zc
was independent of c1 and c2 as well as xc and yc and hence the 1T DoF has to be

about Z axis(heave). Hence MaPaMan-I has roll, pitch and heave as its 3-DoF.

As neither Jv nor Jω have full-rank, we cannot obtain θ̇ given vc or ω; which

would be required in the first-order inverse kinematics problem. Therefore, we find

a composite Jacobian in the task-space which is of full-rank except at singularities.

This requires us to find the velocity of the end-effector in its task space (rts).

rts = (c1, c2, zc)T , (3.4.7)
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We find the coordinates of the end-effector in terms of c1, c2 and zc as shown

in Section3.3. We know the coupler point b2 in each leg i.e. b21, b22 and b23

respectively in terms of θi and ψi, i = 1, 2, 3:

b21 =


x1 + l1 cos θ1 + nl2 cosψ1

0

l1 sin θ1 + nl2 sinψ1

 (3.4.8)

b22 =


1
2(−l1 cos θ2 − n l22 cosψ2 − x1)
√

3
2 (l1 cos θ2 + n l22 cosψ2 + x1)

l1 sin θ2 + nl2 sinψ2 + z1

 (3.4.9)

b23 =


1
2(−l1 cos θ3 − n l22 cosψ3 − x1)

−
√

3
2 (l1 cos θ3 + n l22 cosψ3 + x1)

l1 sin θ3 + nl2 sinψ3 + z1

 . (3.4.10)

Noting that the length of strut is r we frame three constraint equations (ref fig):

f1
4= (b21 − p1) · (b21 − p1)− r2 = 0 (3.4.11)

f2
4= (b22 − p2) · (b22 − p2)− r2 = 0 (3.4.12)

f3
4= (b23 − p3) · (b23 − p3)− r2 = 0 (3.4.13)

and

f(rts,θ,ψ) = (f1, f2, f3)T = 0 (3.4.14)

Differentiating Eq.3.4.14 w.r.t. time we obtain:

∂f

∂rts
ṙts + ∂f

∂θ
θ̇ + ∂f

∂ψ
ψ̇ = 0 (3.4.15)

Rate of motion in the task space is thus obtained as:

ṙts = (Jfrts)−1(Jfθθ̇ + Jfψψ̇), (3.4.16)
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where,

Jfθ = ∂f

∂θ
, Jfψ = ∂f

∂ψ
, Jfrts = ∂f

∂rts
. (3.4.17)

The Eq. (3.4.16) gives us the relationship of the velocity of the end-effector in

the task-space with the joint rates. However, given the active joint rates, we need

to perform the intermediate step of calculating the passive joint rates ψ̇ to get the

end-effector velocity. We obtain ψi in terms of θi in Eq. (3.4.14). Differentiating

ψ with respect to time to get:

ψ̇ = Jψθθ̇, Jψθ = ∂ψ

∂θ
(3.4.18)

Substituting ψ̇ from Eq. (3.4.18) in Eq. (3.4.16) we get:

ṙts =


ċ1

ċ2

żc

 = (Jfrts)−1(Jfθ + JfψJψθ)θ̇ = Jrtsθθ̇, (3.4.19)

(3.4.20)

where Jrtsθ = (Jfrts)−1(Jfθ +JfψJψθ), is a composite velocity Jacobian matrix.

Given θ̇, we can now obtain ċ1, ċ2, żc. All the Jacobian matrices appearing above

can be computed at any configuration after the position kinematics problem has

been solved.

Sample results of the first-order forward kinematics

Example 1: Consider the configuration of the manipulator given by: θ = (0.8, 1.4, 1.1)T .

From forward kinematics (3.4.1),

ψ =


π

π

π

 , φ =


0.8

1.4

1.1

 , γ =


2.004

1.605

1.796

 (3.4.21)
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With this configuration, if the active links are driven with the initial velocity,

θ̇ = (0.100,−0.200,−0.100)T , using Eq. (3.4.19) we calculate the velocity of the

end-effector in the task space:


ċ1

ċ2

żc

 =


0.002

−0.049

−0.003



3.4.3 Inverse kinematics

A composite Jacobian was formulated in Section 3.4.2 that relates the velocity

of the end-effector in its task-space with the active joint rates. This Jacobian is

of full-rank except at singularities. The active joint rates are computed from the

velocity of the end-effector in the task-space as follows:

θ̇ = J−1
rtsθṙts. (3.4.22)

Results of first-order inverse kinematics

Given the same inputs as in the example of section (3.4.2) and ṙts = (0.002,−0.049,−0.003)T ,

the active links angular velocity can be calculated using Eq. (3.4.22)

θ̇ = (0.09,−0.20,−0.09)T .

The θ̇ obtained matches with the values used in the Section 3.4.2, hence validating

the first-order kinematics.

3.5 Zeroth-order kinematics of MaPaMan-II

In this section, forward kinematic formulations of MaPaMan-II are presented fol-

lowed by inverse kinematic formulations. An example is also provided to illustrate

both the formulations.
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Forward kinematics

The forward kinematic formulation of MaPaMan-II is very similar to that of

MaPaMan-I. Only the expressions for pi (i=1, 2, 3) are different due to the

difference in the geometry of the manipulator. The coordinates of the point p1 on

Figure 3.5: Kinematic representation of a leg of MaPaMan-II

the first leg are found in terms of the active variable θ1 and passive variables φ1,

ψ1 and γ1. The global reference frame is placed such that the XZ plane coincides

with the plane of the corresponding four-bar (see Fig.3.5).

As the four-bar in the case of MaPaMan-II is a parallelogram, φ = θ and ψ =

(π, π, π)T . Hence γ are the only unknown passive variables to be computed. The

point p1 is obtained as follows from geometry of the manipulator:

p1 =


l1 cos θ1 + r cos γ1 + 1

2(x1 + x2)

r sin γ1

l1 sin θ1

 . (3.5.1)

Using the symmetry in the architecture, we find points p2 and p3 as described in

Section 3.2.1.

p2 =


1
2

(
−l1 cos θ2 − r cos γ2 − 1

2(x1 + x2)
)
− 1

2

√
3r sin γ2

1
2

√
3
(
l1 cos θ2 + r cos γ2 + 1

2(x1 + x2)
)
− 1

2r sin γ2

l1 sin θ2

 , (3.5.2)
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p3 =


1
2

(
−l1 cos θ3 − r cos γ3 − 1

2(x1 + x2)
)

+ 1
2

√
3r sin γ3

−1
2

√
3
(
l1 cos θ3 + r cos γ3 + 1

2(x1 + x2)
)
− 1

2r sin γ3

l1 sin θ3

 . (3.5.3)

After finding p1, p2 and p3, the same procedure as that adapted for MaPaMan-I

in Section 3.2.1) is followed and all the passive variables are computed. After

computing all the passive variables, p1, p2 and p3 are obtained by substituting

the computed values into corresponding expressions. As an example, the values of

inputs (θ1 = 0.8, θ2 = 1.4, θ3 = 1.1) and all link length parameters (l0 = 100, l1 =

50, l2 = 100, l3 = 50, n = 0.5, r = 100, d = 160
√

3) are substituted. At the base,

coordinates of a1 and a2 are (210, 0, 0)T and (110, 0, 0)T respectively. We obtain:

− 2.180t163 − 5.142t153 − 15.487t14
3 − 19.081t13

3 − 18.386t12
3 − 8.676t11

3 + 113.819t10
3

− 10.575t93 + 518.475t83 − 131.344t73 + 1139.61t63 − 682.798t53 + 1386.1t43 − 1048.97t33

+ 838.827t23 − 481.681t3 + 192.76 = 0 (3.5.4)

Solving Eq. 3.5.4 for t3 yields the following values:

− 2.325,−1.211± 1.678i,−0.843± 1.283i,

− 0.003± 1.829i,±i,±i, 0.501± 0.309i, 0.698± 1.202i, 1.681 (3.5.5)

Complex values of t3 are naturally ignored and so are negative real ones as they

do not represent physically meaningful solutions. The only feasible value of t3 is

1.681, for which the corresponding γ3 obtained is 2.068. From here, the routine

described earlier is followed to obtain γ2 and γ1. Upon computation, we obtain γ2

= 2.121 and γ1 = 2.435.

A validation of numerical results is carried out by substituting the values of
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passive variables into the Eq. 3.2.11. On substituting the values of γi and θi
(i = 1, 2, 3) into η, we get:

η = (6.217, 8.659, 1.110)T × 10−15 (3.5.6)

Substituting all the passive variables to obtain pi; i = 1, 2 and 3, gives

p1 =


72.351

68.123

53.802

 , p2 =


−106.401

5.326

73.908

 , p3 =


37.954

−118.818

66.840

 . (3.5.7)

Figure 3.6: The pose of MaPaMan-II corresponding to the θ = (0.8, 1.4, 1.1)T

3.5.1 Inverse kinematics

The coordinates of p1, p2 and p3 are known and θ need to be computed. From

Fig. 3.5, Z coordinate of p1 is l1 sinφ1 which gives:

φ1 = arcsin
(
p1 · ez
l1

)
,where ez = (0, 0, 1)T . (3.5.8)
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Note that due to the geometry of the manipulator, the inverse kinematics problem

can be solved in closed form for MaPaMan-II as opposed to MaPaMan-I where we

obtain 8 solutions for a given pose of end-effector. As the four-bar is a parallelo-

gram linkage in MaPaMan-II,

θ1 = φ1 (3.5.9)

To find out θ2, symmetry of the architecture is used. The plane of the second four-

bar is rotated by 120◦ CCW about Z axis, so that it now coincides with the XZ

plane, and the transformed coordinates of p2 are found. Then θ2 is computed in

the same fashion θ1 was computed. In a similar fashion θ3 is computed.

As an example, the same link lengths and the positions of pi (i = 1, 2 and 3) are

taken as in the Section 3.6.1:

p1 =


72.351

68.123

53.802

 , p2 =


−106.401

5.326

73.908

 , p3 =


37.954

−118.818

66.840

 . (3.5.10)

On solving for the actuator angles as described above, the following values are

obtained.

θ1 = 0.799 (3.5.11)

θ2 = 1.399 (3.5.12)

θ3 = 1.098 (3.5.13)

The inputs that were chosen in the Section 3.5 were θ1 = 0.8, θ2 = 1.4 and θ3= 1.1,

which is equal to what is obtained from inverse kinematics computation, hence

validating it.
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3.6 First-order kinematics of MaPaMan-II

First-order kinematic formulations of MaPaMan-II are developed on the lines of

the formulations for MaPaMan-II. The characterising of DoF is also carried out

to establish the partition in the DoF in MaPaMan-II. Numerical examples are

provided at the end of each formulation.

3.6.1 Forward kinematics

The same approach as that used for MaPaMan-I is followed for finding the Jaco-

bians Jv and Jω. The velocities of end-effector vc and ω and computed from Jv

and Jω and θ̇ using Eq. 3.4.1 and Eq. 3.4.6. All the Jacobian matrices appearing

above can be computed at any configuration after the position kinematics prob-

lem has been solved. Therefore, the linear velocity of any point of interest can be

obtained by the above process if the joint velocity vector, θ̇, is known and so is

the angular velocity of the end-effector.

Sample results of the first-order forward kinematics

Example 1: Consider the configuration of the manipulator given by: θ = (0.8,1.4,1.1)T .

From forward kinematics (3.5), ψ = (π, π,π)T , φ = (0.8,1.4,1.1)T , γ = (2.435,

2.121, 2.068)T . With this configuration, if the active links are driven with the

initial velocity, θ̇ = (0.1000, -0.2000, -0.1000)T , using Eq. (3.4.19) we calculate

the velocity of the end-effector:

(ċ1, ċ2, ċ3)T = (0.050, 0.006, 0.015)T

(ẋc, ẏc, żc)T = (−0.011, 0.078,−0.002)T .
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3.6.2 Characterising the degrees-of-freedom of MaPaMan-II

For the sake of illustration, we take the same configuration of MaPaMan-II as that

used in section 3.6.1.

Jω =


0.313 −0.042 −0.108

−0.014 0.058 −0.190

−0.144 −0.094 −0.106



⇒g =


0.119 −0.0005 −0.016

−0.0005 0.014 0.003

−0.016 0.003 0.059


The rank of g turns out to be 3 unlike in MaPaMan-I. As g is of full-rank, its

nullspace is empty. Hence gv cannot be found, validating 3R and 0T nature of

MaPaMan-II.

Inverse kinematics

As Jω matrix is of full rank when not at a singularity of loss-type (Zlatanov,

Bonev, and Gosselin, 2002), we follow the same formulation in Section 3.6.1, to

calculate θ̇ for given values of ω. Using ω and Jω, we calculate:

θ̇ = J−1
ω ω̇. (3.6.1)

Given the angular velocity of the end-effector, active joint rates can be calculated

using Eq. (3.6.1).

Results of first-order inverse kinematics

Given the same inputs as in the example of Section3.6.1 and ˙rts =


0.050

0.006

0.015

,
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the active links angular velocity can be calculated using Eq. (3.6.1)

θ̇ =


0.099

−0.199

−0.099.



The θ̇ obtained matches with the values used in the Section3.6.1, hence validating

the first-order kinematics.

3.7 Incremental approach to zeroth-order kine-

matics

Realtime applications like computed torque control ((e.g. Ghosal, 2006)) require

forward kinematic computations at each actuation cycle. However it is observed

that the computation time for each set of γt values is 0.156s using Mathematica.

Hence the present approach to forward kinematics would not help in real-time

applications and so an alternate technique to approximately find out the passive

variables at any time for a given set of inputs has been developed.

In this method, we make use of the first-order properties of motion and estimate

the value of the passive variables at an instant given its value in the previous

instant and a sampling time. The error in the estimation depends on the choice

of sampling time and the speed of motion involved.

Differentiating Eq.3.2.11 with respect to time, we obtain

∂η

∂t
= ∂η

∂θ
θ̇ + ∂η

∂ψ
ψ̇ + ∂η

∂γ
γ̇ = 0. (3.7.1)

Or,

(
∂η

∂θ
+ ∂η

∂ψ
Jψθ

)
θ̇ + ∂η

∂γ
γ̇ = 0 (3.7.2)

⇒ (Jηθ + JηψJψθ)θ̇ + Jηγγ̇ = 0. (3.7.3)
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Hence we obtain

γ̇ = −J−1
ηγ (Jηθ + JηψJψθ)θ̇ = Jγθθ̇. (3.7.4)

If we know the θt and γt at any instant t, then for a given θ̇, we choose a sampling

rate ∆θ such that;

θ(t+ ∆t) = θ + ∆θ. (3.7.5)

Thus, γ(t+ ∆t) = γ(t) + Jγθ∆θ. (3.7.6)

A truncation error keeps building up with time due to the approximation involved.

This error can be rectified once in a while depending on the chosen sampling rate,

by solving the Eq.3.2.11. It is observed that the computation time for each set of γt
values is 0.016s as opposed to 0.156s using the classical method on Mathematica.

3.8 Conclusion

In this Chapter, we have presented the forward and inverse kinematic relationship

between the end-effector and the active joints in zeroth-order and first-order. The

forward kinematics problem of MaPaMan-I and MaPaMan-II resulted in a 16-

degree univariate polynomial whose coefficients are obtained in closed-form. The

inverse kinematics yielded an 8-degree polynomial for MaPaMan-I and closed-form

solutions for MaPaMan-II. We also presented the results and their validations for

these formulations.

A new incremental approach to forward kinematics was presented that is com-

putationally much faster than the classical method. The merits and demerits of

this approach are discussed. With the forward and inverse kinematic relationships

presented in this Chapter, we can obtain the end-effector position and orientation

anywhere within the workspace except at singular points. At the singular points,

the relationship between the end-effector and the active joints degenerates. In the

next Chapter we study a class of these singular cases, specifically the gain-type
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singularities associated MaPaMan-I.
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CHAPTER 4

Singularity analysis of MaPaMan-I

4.1 Introduction

Parallel manipulators typically have three types of singularities: loss-type, gain-

type and a combination of these two (Zlatanov et al., 2002). During a loss-type

singularity, there exist some non zero active joint rates that result in zero veloc-

ity of the end-effector. During a gain-type singularity, the end-effector has an

infinitesimal instantaneous motion when all active joint rates are zero. Hence

from the perspective of controlling the manipulator loss-type singularities give a

sense of boundary of the workspace while gain-type singularities do lead to loss

of controllability even inside the workspace. Hence from the perspective of con-

trolling the manipulator, gain-type singularities are of prime importance. In this

chapter, we present the conditions for gain-type singularities of MaPaMan-I. An

attempt to obtain a manifold in the task-space representing the singular regions

in the workspace has been presented. Finally the singularities are visualised in a

numerical sense using contour plots at the end of the chapter.

4.2 Conditions for gain-type singularity

It has already been discussed in Section 3.2.1, that the kinematics of the four-bars

at the base are independent of the rest of the mechanism. Hence their singularities

are studied separately from the rest of the mechanism. For the sake of simplicity

let us assume that the four-bar is not allowed to reach singularity. This can

be assured by ensuring that the four-bars adhere to Grashof conditions. This

assumption ensures that Jψθ exists. From Eq. 3.7.1 we have (Jηθ + JηψJψθ)θ̇ +

Jηγγ̇ = 0. If Jηγ becomes singular, then for any γ̇, θ̇ will remain zero. In other



words the motors get locked even when the end-effector has a non-zero velocity

(Bandyopadhyay and Ghosal, 2006). Hence the singularity condition for gain-type

of singularity is

det(Jηγ) = 0. (4.2.1)

Upon simplification, we always obtain r3 as a factor of Eq. 4.2.1. As r is a design

variable, a factor of r3 can have an effect on the value of Eq. 4.2.1 depending on

the unit of measurement or scaling of the overall system of dimensions. Hence we

remove this factor from the expression for singularity and obtain a new singularity

condition

S(γ) 4= det(Jηγ)
r3 = 0, (4.2.2)

This condition however has certain link dimensions appearing in it and since no

further factorisation was possible, the link dimensions are first normalised. With-

out any loss of generality, we normalise the link lengths with respect to x1 .ie., set

x1=1.

Fig. 4.1 shows MaPaMan-I in a singular state for the sake of better visualization

Figure 4.1: A gain-type singular pose of MaPaMan-I

of a gain-type singularity; for the link dimensions given in Table B.1. The values

of the actuator angles θ are (0.25, 1, 1)T and the corresponding values of passive
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variables are φ = (0.33, 1, 1)T

ψ = (3.14, 3.14, 3.14)T

γ = (2.546, 1.865, 1.865)T . On substituting all these values into S(γ), we obtain

S(γ) = −3.76× 10−6 (4.2.3)

, which is 0; hence validating that it is at gain-type singularity. Note how the strut

appears in the same plane as the end-effector. While this example demonstrates

gain-type singularity, it should be noted that this need not be the only physical

condition where gain-type singularities might be encountered as suggested by Basu

and Ghosal (1997) in the case of 3-RPS manipulator.

4.2.1 Singular manifold

Singular manifold is the locus of the end-effector in the task-space, such that it

is always satisfies the conditions for gain-type singularity. Such a manifold is

generated to be free of all active and passive variables and solely obtained as a

set of one or more surfaces in a three dimensional space rts = (c1, c2, zc)T . Such a

surface has a lot of implications in path planning, where the path is algorithmically

chosen such that it never interesects the singularity manifold and hence avoids

any encounters with gain-type singularities in the workspace. Trajectory tracking

it becomes very helpful if a singularity-free convex region can be found in the

workspace so that any path in that region could be tracked without loss of control.

In the field of parallel manipulators it is well-known that obtaining closed-form

expression for singularity manifolds is not always possible due to highly non-linear

nature of the constituent equations from which the expression for the manifold is

derived. However, due to the enormity of the impact that the expression for

such a manifold can have on problems of path-planning etc., it is attempted to

find an expression for the same in this report. In order to obtain the singularity

manifold, equations that relate the active variables to the task-space variables are

first formulated. The active variables are then eliminated to finally obtain an

equation devoid of all variables except the task-space variables.
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As shown in Section 3.4.2, the coordinates of end-effector are first found in terms

of rts. The coordinates of b2i (i=1, 2, 3) are known from Eq.3.4.8. The following

constraint equations can be framed as the length of the strut is constant.

fi(θ, rts)
4= (pi − b2i) · (pi − b2i)− r2, i = 1, 2, 3. (4.2.4)

f = (f1, f2, f3)T = 0 (4.2.5)

As the constraints are invariant w.r.t. time, differentiating Eq.4.2.5 gives:

df

dt
= ∂f

∂θ̇
θ̇ + ∂f

∂ṙts
˙rts = 0 (4.2.6)

⇒ Jfθθ̇ + Jfrts
ṙts = 0 (4.2.7)

(4.2.8)

Hence the condition for gain-type singularity is

f4(θ, rts)
4= det(Jfrts) = 0 (4.2.9)

(4.2.10)

Upon solving the four equations (fi = 0, i = 1, 2, 3, 4), we can eliminate θ to

obtain a manifold solely in rts. The θ in fi(i = 1, 2, 3, 4) are all converted

to algebraic expressions (3.2.18) to obtain g1(t1, rts), g2(t2, rts), g3(t3, rts) and

g4(t1, t2, t3, rts) respectively. The following is the scheme used to eliminate θ in a

step by step fashion:

g1(t1, rts)

g4(t1, t2, t3, rts)

 ×t1−→ g5(t2, t3, rts) = 0

g2(t2, rts) = 0



×t2−→ g6(t3, rts) = 0

g3(t3, rts) = 0


×t3−→ g7(rts) = 0

(4.2.11)

The functions g1 and g4 are quadratic in t1. The variable t1 is eliminated from

g! = 0 and g4 = 0 to obtain g5(t2, t3, rts) = 0 which is quartic in both t2 and
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t3. As the size of the expression is large ≈ 4.3MB, the coefficients are replaced

with “dummy-coefficients”. Replacing the coefficients with dummies reduces the

size of the expression while retaining the structure of the equations. However any

simplification or cancelation of terms that may occur at later stages due to the

actual nature of the coefficients is compromised for by replacing them with dummy

coefficients.

The function g5 is quartic in t2 while g2 is quadratic in t2, hence t2 is eliminated

from these two to obtain g6(t3, rts) = 0, where g6 is an eight degree polynomial in

t3.

The coefficients of t3 in g6 are once again replaced with dummy coefficients due

to their large size. The function g3 is quadratic in t3 and hence g6 is divided by

g3j with respect to t3, to return a remainder that would be no more than linear

in t3. Solving the linear equation in t3 and substituting back in g3 = 0, we obtain

the required singularity manifold in terms of rts free of θ.

Upon substituting back the values of the dummy coefficients into the final expres-

sion, we obtain an extremely large expression ( ≈ 89GB in size) whose coefficients

are obtained in closed-form in terms of length parameters and rts. An expres-

sion of such a large size is very difficult to manipulate or study and hence it is

abandoned at this.

4.2.2 Numerical studies of the gain-type singularities

As a closed-form derivation of the singularity manifold was fruitless, a numerical

approach is followed to understand the singularities better. For clarity in visu-

alising the singular regions contour plots are generated that show the singularity

regions for a given zc, as well as the distance of any point in the task-space from

singular manifold.

Visualisation of the singular manifold in the task-space

For the dimensions presented in Table B.1, a region is spanned in the (c1, c2) space

at a given zc and contour curves are plotted for S(γ). As S(γ) is a function of θ
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and γ, for each value of (c1, c2) at a given zc, inverse kinematic calculations are

performed to obtain θ and γ, which are then used to find the value of S(γ).

The brief description of the physical meaning of Rodrigue’s parameters are given

in Section3.3. In case of MaPaMan-I, c1 = kx tan φ
2 , c2 = ky tan φ

2 , c3 = 0; where

k2
x + k2

y = 1. Hence we choose kx = cos ς and ky = sin ς. In the contour plot, the

X-axis represents the angle ς and Y-axis represents ϕ. The parameters ϕ and ς

are chosen instead of c1 and c2 as they have a periodic boundary limit of [0, 2π] as

opposed to c1, c2 that can take any value in R. Moreover it is easier to visualise

the task-space in terms of ϕ and ς instead of c1 and c2. The value of ς indicates the

orientation of the instantaneous axis of rotation in the XY plane while ϕ indicates

the tilt of the end-effector about that axis. The curves on the contour correspond

Figure 4.2: Singularity countour showing 3-way symmetry

to the magnitude of S(γ) which represents the ‘distance’ from the singularity. In

Fig. 4.2 the zero valued curve (shown by dotted line) on the contour represents the

singular curve in the workspace, while the white space indicates infeasible points.

The Fig. 4.2 shows the singularity contour for zc = 110. Note the 3-way

symmetry appearing in the plot owing to the symmetry in the architecture of the

manipulator. For the sake of clarity, the contour is plotted next for one-third of

the range of ς. The Fig. 4.3(a-d) show how the contours change with variation
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(a) Contour plot of singular manifold
in rts space at zc = 135

(b) Contour plot of singular manifold
in rts space at zc = 150

(c) Contour plot of singular manifold
in rts space at zc = 165

(d) Contour plot of singular manifold
in rts space at zc = 175

Figure 4.3: Singularity contours in terms of ϕ and ς at varying zc

in zc. It is observed that above zc = 150, zero-valued curve on the contour plot

dissapears (see Fig. 4.3(a)). This shows that above this value of heave, gain-type

singularity is not possible. However, the predominant white space indicates that

the singularity free workspace decreases with increasing heave as shown in Fig.

4.3(b).
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Visualisation of the singular manifold in terms of roll, pitch and heave

In several practical applications, orientation is better visualised in terms of roll

and pitch instead of Rodrigue’s parameters or ς, ϕ that are derived from them.

Hence the contour plots are also plotted in a more intuitive roll, pitch, heave

framework. Similar to the earlier plots, for various roll and pitch values, inverse

kinematic calculations are performed and θ and γ values are computed to obtain

the value of S(γ) at those points (see Fig. 4.4). Again note that for zc > 150mm,

we dont observe any gain-type singularity. The advantage of plotting in roll,

pitch and heave framework is that it is easier to visualise and extremely useful in

planning paths in the workspace. For example, during path-planning it becomes

very helpful if a singularity-free convex region can be found in the workspace so

that any path in that region could be tracked without losing control en-route.

This can be realised by fitting a circle in the contour plot to obtain a singularity

free region as shown in Fig. 4.4(b).
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(a) Contour plot of singular manifold
at zc = 110

(b) Contour plot of singular manifold
at zc = 135

(c) Contour plot of singular manifold
at zc = 150

(d) Contour plot of singular manifold
at zc = 175

Figure 4.4: Singularity contours in roll and pitch at varying zc
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4.3 Conclusion

In this Chapter we have presented the gain-type singularities associated with

MaPaMan-I. A closed-form expression for the singular manifold has been derived

but due to its very large size (89GB), it is impossible to manipulate and study such

an expression and study; hence it was abandoned. A numerical study of the sin-

gular manifold through contour plots has been presented. The plots reveal 3-way

symmetry due to the symmetry inherent in the geometry of the manipulator. The

plots show that after a certain value of heave, gain-type singularities do not ap-

pear, but workspace becomes very limited in size. This property becomes useful in

practical applications as the manipulator can be controlled without encountering

any gain-type singularity after a certain value of heave.
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CHAPTER 5

Dynamics

5.1 Introduction

Kinematics provides information about the position of the end-effector and its

time derivatives, and their relationship with the actuator displacement and veloc-

ities. However, to find out the effect of forces and torques acting on the system

a dynamic analysis is necessary. The dynamic analysis of MaPaMan forms a part

of a concurrent study reported in Mehta (2012).

While this report does not deal with the dynamic formulations of MaPaMan, yet

we require certain elements of the same to understand the effect of the design

parameters on variation of torque which is presented in Section 6.2.3. While all

the computations required are already a part of Mehta (2012), a brief section has

been included in this report for the sake of logical continuity and completeness of

the contents.

5.2 Development of the mathematical model in

the actuator space

A mathematical model was developed in the actuator space to study the dynamics

of the system. The advantage of working in the actuator space is that the model

becomes equivalent to that of a serial manipulator and we can directly obtain

the actuator torques. The following is the general form of the dynamic model in

actuator space θ = (θ1, θ2, θ3)T :

M θθ̈ +Cθθ̇ +Gθ = τ θ. (5.2.1)



This formulation is valid as long as the manipulator encounters no gain-type sin-

gularity in its trajectory. Given a desired trajectory we can perform the inverse

kinematics (refer to Section 3.2.2 and 3.4.3) to calculate the corresponding desired

values of θ, φ, ψ, γ, θ̇, ψ̇, φ̇ and γ̇. Using formulations in Ghosal (2006), we

can calculate M θ,Cθ and Gθ. Hence for a non-singular trajectory we obtain the

torques on the actuator τ θ at any instant. For the analysis carried out in this

project, we require the torques on the actuator in a static scenario. In statics, the

rates of all joints are zero. Thus

τ θ = Gθ (5.2.2)

where,

Gθ = JTqθG, Jqθ = ∂q

∂θ
. (5.2.3)

The vector G is obtained from a Lagrangian formulation of the dynamic model in

full configuration space, q = (θ,γ)T :

V = g
n∑
i=1

mipci (5.2.4)

G = ∂V

∂q
(5.2.5)

where,

pci : height of center of gravity of ith link from reference plane z=0.Thus we obtain

the torques in each motor for a static scenario.

5.3 Conclusion

A mathematical model was developed in the actuator space. We need to compute

the torques required at motors to maintain a static configuration, which we obtain

from Eq. 5.2.2. This would be used in Section 6.2.3 that deals with parametric
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variations and their effect on the torques at the three actuators. The dynamic

model also serves as the basis for choosing the right actuators for a required task.

Section 7 deals with design details of two prototypes of MaPaMan-I. The dynamic

model was used to validate the choice of motors used in it to satisfy certain target

requirements.
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CHAPTER 6

Parametric study of the manipulator

architecture

6.1 Introduction

Parametric studies have been carried out to evaluate the impact of the design

parameters in MaPaMan-I on various performance parameters of the manipula-

tor. As there exists no formal basis of comparison for two parallel manipulators

in general, a few basic performance metrics are studied such as: stiffness, payload

inertia to self-weight inertia, mechanical advantage and range of motion. Para-

metric studies have been carried out that bring out the essential features of the

manipulator for a given set of link dimensions. These studies aid in designing the

most suitable manipulator for a given task. In the Chapter 7 these studies are

utilised to come up with the best set of dimensions for a given target specification

of a prototype of MaPaMan-I.

6.2 Description of performance metrics

Availability of a large number of design parameters is a feature of MaPaMan that

makes it more adoptable to different tasks than many other existing manipulators

such as 3-RPS, Agile Eye etc. For the sake of simplicity, we reduce the design space

a little by assuming the four-bar to be a parallelogram. The design parameters

under consideration include l0, l1, n, r, rt for a given x1. Understanding the effect

of variation of each of these parameters on overall performance of the manipulator

is essential to decide on the link dimensions.



6.2.1 Variation of stiffness

One basis of comparison between two manipulators could be the stiffness that

they offer in certain chosen direction. The stiffness would vary with change in

configuration and would be the least when near singularity. We assume that a

pay-load (mass=m) is placed at the centroid of the end-effector. A lot of effort

would be required to move it up ad down as opposed to just tilting the end-

effector as the potential energy of the payload changes much more while lifting

it rather than while tilting. Therefore, it is necessary for the mechanism to be

stiff in the vertical direction while lifting the payload. Hence, to obtain an overall

feel of stiffness we subject the manipulator to produce a pure heave motion while

carrying a payload (see Fig. 6.1). The deflection of the manipulator in the vertical

a2   2       2(x  , z  ) a1   1       1   (x  , z  )

b1 l1

r1

b2

b3

θ

ψ

φ

Z

X

1
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γ
1

Figure 6.1: Kinematically equivalent 1-DoF mechanism representing a leg of
MaPaMan-I for pure heave motion

direction is calculated assuming static conditions at each instance and the stiffness

is computed as the force required to produce unit deflection along the direction

of its application. This way instead of looking at the entire stiffness matrix of

the mechanism, we look at one specific dominating term of the matrix, namely

the stiffness in the vertical direction; which essentially provides us with a scalar

57



representative measure at each instant to quantitatively study the stiffness. Fig.

Figure 6.2: FBD of MaPaMan-I

6.2(a) shows a kinematically equivalent 1-DoF mechanism representing the first leg

when the top platform undergoes pure heave motion. A free-body diagram(FBD)

is constructed as shown in Fig. 6.2(b). Due to the symmetry in loading, F3 =
mg
3 . From the FBD of each leg, it is clear that there are 12 unknowns; Fi (i =

1, . . . , 12, i 6= 3) and τ . These are obtained by solving the following representative
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static equilibrium of the individual components.

F4 − F6 = 0 (6.2.1)

F3 +m4g − F5 = 0 (6.2.2)

F3 cos γ1 − F4 sin γ1 + m4

2 g cos γ1 = 0 (6.2.3)

m2g + F5 − F8 + F2 = 0 (6.2.4)

F6 − F1 − F7 = 0 (6.2.5)

F8(1− n) cosψ1 − F7(1− n) sinψ1−

m2g(1/2− n) cosψ1 + F2n cosψ1 + F1 sinψ1 = 0 (6.2.6)

τ + F1l1 sin θ1 + F2l1 cos θ1 −
m1gl1

2 cos θ1 = 0 (6.2.7)

F1 + F12 = 0 (6.2.8)

F2 + F11 −m1g = 0 (6.2.9)

F7 − F10 = 0 (6.2.10)

F8 − F9 +m3g = 0 (6.2.11)

F7l3 sinφ1 − F8l3 cosφ1 −
m3gl3

2 cosφ1 = 0 (6.2.12)

Upon solving the Eq.6.2.1-Eq.6.2.12 for the 12 variables, we obtain all the forces

and the torque. The deflections in each member due to the action of forces are

found. Some generic assumptions are made to simplify the calculations:

• All members are assumed to behave in a linear elastic manner, i.e.,Hooke’s
law is applicable.

• All links are taken to be straight and of uniform rectangular cross-section.

• The deflection due to self-weight of the links are neglected w.r.t. the deflec-
tion due to the forces acting.

• The top moving plate is assumed ot be rigid.

The deflection in the strut is due to axial loading. Assuming the area of cross-

section to be A and Young’s modulus to be E, the deflection in axial direction is

computed as:

δstruta =

√
F 2

3 + F 2
4 r

AE
(6.2.13)
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The deflection in the coupler is due to axial loading as well as bending. The

deflection due to axial loading is computed as:

δcouplera = F6l0
AE

, (6.2.14)

The deflection due to bending is approximated as in the bending of a pinned-

pinned beam. The deflection in this member is computed as shown in Timoshenko

(1930):

δcouplerb = F5l
3
0

48.7EI , (6.2.15)

where I is the area moment of inertia of the cross-section about its neutral axis.

The deflection in the rocker is due to the axial loading alone, which is computed

as:

δrockera =

√
F 2

7 + F 2
8 l1

AE
, (6.2.16)

The deflection in the crank is due to axial loading as well as bending. The axial

deflection is computed as:

δcranka = (−F2 sin θ1 − F1 cos θ1)l1
EA

, (6.2.17)

The deflection due to bending is approximated as a cantilever bending and is

computed as:

δcrankb = (F2 cos θ1 + F1 sin θ1)l31
3EI (6.2.18)

The ratio deflection in the crank due to bending and due to axial loading is decided

by the ratio of the length of the crank, to its thickness.

δcrankb
δcranka

=
(
Fbl

3

EI

)
/

(
Fal

AE

)
= Al2

I
= b2l2

b4/12 = 12 l
b

2
, b << l (6.2.19)

as Fb ' Fa (same order)
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As the thickness is very small compared to its length, the deflection due to axial

loading comes out to be very small compared to that due to bending. Hence δcranka
is neglected w.r.t. δcrankb . The overall deflection in the vertical direction is the

sum of all the individual components in that direction:

δz = δstruta sin γ1 + δcouplerb + δrockera sin θ1 + (δcrankb cos θ1)
2 (6.2.20)

The overall deflection in the Z direction is found to be δz. Hence the component

of stiffness in the vertical direction is:

K = mg

δz
(6.2.21)

The variation of the stiffness is calculated for different input angles for the design

parameters given in Table B.1. We observe that the stiffness is higher at higher

input angles. The stiffness value is high and varies very little over the entire range

of motion (see Fig. 6.3). The design parameters are varied and the variation in

stiffness is noted.

35 40 45 50 55
Θ1 in deg

2 ´ 106

4 ´ 106

6 ´ 106

8 ´ 106

1 ´ 107
K in N�m

Figure 6.3: Variation of stiffness with change in input angle

• Lower values of l0 as well as l1 provide higher stiffness to the system. The
effect of l1 is however more profound as seen in Fig. 6.4(a) and Fig. 6.4(b).
This is because lower the l1 value, lesser will be the deflection in it and hence
greater the stiffness of the system. On the other hand, l0 does not feature
directly in the calculations of deflection, but affects the kinematics of the
manipulator which in turn affects the stiffness. Hence its effect is not as
significant as that of l1.
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• A lower value of rt imparts lesser stiffness to the system than a higher value
of rt (see Fig. 6.4(c). This is expected and can be explained by the fact that
the end-effector comes in the same plane as the strut at smaller displacements
of the crank when the rt value is lower, than at higher values of rt. When
this happens, the manipulator loses stiffness along the direction normal to
the end-effector.

• Variation of other parameters show very little effect on the stiffness of the
manipulator as compared to l1, l0 and rt.
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(a) Effect of l1 on stiffness
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(b) Effect of l0 on stiffness
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(c) Effect of rt on stiffness

Figure 6.4: Effect of design parameters on stiffness
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6.2.2 Variation of payload to self-weight inertia

Payload to self-weight ratio plays an important role when comparing the load

carrying abilities of two manipulators. The ratio of mass of payload to mass of

system says very little about its behaviour in motion, hence a new metric based

on equivalent inertia in motion is used to find out the ratio of moving inertia

of payload to the system. While inertia of the payload is a simple quantity to

measure, inertia of the manipulator as a whole is too complicated to be quantified

by a single scalar. Hence we subject the manipulator to a pure heave motion, as in

the case of quantifying stiffness so that all the active joint rates are the same and

then we find the equivalent inertia of the system. Also the payload to self-weight

ratio becomes a critical factor when lifting a payload vertically up, hence choice

of a pure heave motion is a justifiable decision.

When the manipulator executes a positive heave motion, the kinetic energy of the

entire system is computed and an equivalent inertia of the entire system (Fig 6.1)

is found. As the active joint rates are all equal, the kinetic energy of each link in

one leg will be the same as the corresponding ones in the others.

Tcrank = 1
2

(
m1l

2
1

3

)
θ̇2
1 (6.2.22)

Tcoupler = 1
2m2l

2
1θ̇

2
1 (6.2.23)

Trocker = 1
2

(
m3l

2
1

3

)
θ̇2
1 (6.2.24)

Tstrut = 1
2(m4v.v) + 1

2

(
m4r

2

12

)
γ̇2

1 , (6.2.25)

where,

v =


−l1 sin θ1θ̇1 − r

2 sin γ1γ̇1

0

l1 cos θ1θ̇1 + r
2 cos γ1γ̇1

 (6.2.26)
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As the motion under consideration is pure heave, γ is known explicitly in terms

of θ from forward kinematics(see Section 3.2.1).

γ1 = arccos
(1
r

(−l1 cos θ1 + l2n+ rt − x1)
)

(6.2.27)

and,

γ̇ = Jγθθ̇ (6.2.28)

⇒ γ̇1 = − l1 (2l1 sin θ1 cos θ1 + sin θ1 (l1 cos θ1 − 3l2n+ 3r cos γ1 + 3x1))
r (sin γ1 (3l1 cos θ1 − 3l2n+ r cos γ1 + 3x1) + 2r sin γ1 cos γ1)

θ̇1.

(6.2.29)

Similarly kinetic energy of top-plate and payload are computed.

Ttop−plate = 1
2m5ż

2
c (6.2.30)

Tpayload = 1
2mż

2
c (6.2.31)

where zc is known explicitly in terms of θ1.

zc = l1 sin θ1 + r sin γ1 (6.2.32)

⇒żc = l1 cos θ1θ̇1 + r cos γ1γ̇1. (6.2.33)

, where γ̇1 is known in terms of θ̇ from Eq.6.2.29. Hence total kinetic energy:

Tsystem = 3(Tcrank + Tcoupler + Trocker + Tstrut) + Ttop−plate + Tpayload (6.2.34)

Having found the total kinetic energy of the system, we find the equivalent inertia

of all three legs as reflected at the actuators; denoted by Isystem. Similarly we find

out the equivalent inertia of the payload as reflected at the actuator; denoted by
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Ipayload.

Tsystem = 1
2Isystemθ̇

2
1 (6.2.35)

Tpayload = 1
2Ipayloadθ̇

2
1 (6.2.36)

⇒IR 4= Ipayload
Isystem

= Tpayload
Tsystem

(6.2.37)

(6.2.38)

The variation of IR is plotted against change in input angles and its variation

with respect to change in design parameters is noted.
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Figure 6.5: Variation of IR with change in input angles

• The payload to self-weight ratio decreases with increase in input anglesas
shown in Fig. 6.5. This is because when the strut is perpendicular to the
end-effector it is at loss-type singularity. With greater crank displacement,
the manipulator nears loss-type singularity where the velocity of the end-
effector drops to zero. Hence with increase in displacement of the crank, IR
keeps decreasing.

• We observe that if the strut is placed closer to the rocker then IR decreases
(see Fig. 6.6(a)). Similarly lower values of rt produce high IR values as
shown in Fig.6.6(b). This can also be explained by the same argument used
for the previous case. The manipulator reaches loss-type singularity at lower
displacements of crank when the strut in closer to rocker as well as when the
rt value is high. Hence a low value of rt provides lower IR and by the same
argument IR decreases as the strut is moved away from the crank.

• Lower values of r as well as l1 provide higher payload to self-weight ratio
(see Fig. 6.6(c) and Fig. 6.6(d)). This behaviors is expected as lower link
lengths implies lower moment of inertia when in motion.
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Figure 6.6: Effect of design parameters on IR67



6.2.3 Variation of mechanical advantage

For a pure heave motion, the variation of torque with the change in input angles

is easily obtained from the dynamic model (see Section 5.2). The ratio of force

applied by the payload to the torque required to equilibriate it gives an indication

of the mechanical advantage of the system. If the active joint positions are all

different, then we obtain different torques in each motor which makes is difficult

to analyse the change in torque at different input angles. Hence we assume a

scenario where all the motors have the same joint positions at each time so that

the variation of torque with change in active joint positions can be studied easily.

In a static scenario, joint rates are all zero, hence

τ θ = Gθ (6.2.39)

From Section 5.2, for the above case, we find:

τ1 =gl12

(
−m4 cot γ1 sin θ1 −

2
3 (m+m5) cot γ1 sin θ1 +m1 cos θ1

+ 2m2 cos θ1 +m3 cos θ1 + 2m4 cos θ1 + 2
3 (m+m5) cos θ1

)
(6.2.40)

This need not necessarily depict the worst case scenario for torques required at

the actuator for the given actuator angle; however, it gives us an indication of the

variation of torques in general with change in input angles. The change in the

nature of this plot with change in design parameters is noted.
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Figure 6.7: Variation of mechanical advantage with change in input angle

68



• The mechanical advantage is higher when the strut is closer to the rocker
(see Fig. 6.8(a)).

• We observe that higher values of strut length increases the mechanical ad-
vantage(Fig. 6.8(b)).

• Decreasing the value of l1 greatly increases the mechanical efficiency while
rt and l0 exhibit opposite behaviour(Fig. 6.8(c), Fig. 6.8(d), Fig. 6.8(e),
Fig. 6.8(f)).

To further substantiate the study, by fixing the position of two of the motor

angles, the third angle alone is varied and the torque variation is studied. Keep-

ing θ2 and θ3 fixed at 35◦ and 45◦ respectively, θ1 is varied. The torque required

to maintain the configuration is higher at lower input angles and decreases with

increase in input angles (see Fig. 6.9).
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(b) Effect of r on mechanical advantage

35 40 45 50 55 60 65 70
Θ1 in deg20

30

40

50

60

70

80
F�Τ in 1�m

n=0.9

n=0.5

n=0.2

(c) Effect of n on mechanical advantage
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Figure 6.8: Effect of design parameters on on mechanical advantage
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Figure 6.9: Variation of torque in motor w.r.t. crank angle

71



6.3 Dynamic visualisation of behavious of per-

formance indices

Figure 6.10: Dynamic visualiser to visualise behaviour of performance metrics

A dynamic visualiser was developed using Mathematica to understand be-

haviour of all the performance-metrics under study simultaneously. The motiva-

tion behind doing this was to see if there was any definitive trend that could be

observed so that some of the metrics can be clubbed together and studied. The

dynamic visualiser (see Fig. 6.10) has a provision to vary the values of design

parameters, so that at each chosen value of design parameter, the variation of

each performance-metric w.r.t. crank angle can be observed. It is observed that

stiffness and mechanical advantage go hand in hand while IR behaves in an oppo-

site fashion. The advantage of this study is that, when designing MaPaMan for

any requirement, the performance metrics with similar behaviour can be clubbed

together. The values of the design variables offering the best compromise be-

tween the metrics having opposing nature can then be chosen instead of studying

the effect of each variable on each metric; which can reduce the efforts spent in

the design process. The dynamic visualiser also helps us visualise as to which of

the design parameters cause greater change in nature of each performance metric

w.r.t. the others. This can aid in choosing the most critical design variables for

any given requirement such that varying its value causes greater influence on one
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of the metrics more than the others. For example, n has a greater impact on the

mechanical advantage than the other two metrics. So increasing the value of n

profoundly influences the mechanical advantage, while the stiffness doesnt change

much.

6.4 Optimization for desired range of motion

The contour plots in Section 4.2 give us an idea about the theoretical limits of

tilt possible in the manipulator. However, practical limitations such as link inter-

ference, joint angle limits etc, can further reduce the range of motion. In order

to find out the practical range of motion for a given set of link lengths, a genetic

algorithm(GA) based optimization was carried out.

Genetic algorithms have been used widely for solving global optimisation problems

as they typically explore the search domain better than gradient-based methods

that converge at local minima closest to the initial guess (e.g. Deb, 1995). In the

present optimization scenario we have two objectives and nineteen constraints,

and a large design space. In concurrent studies carried out by Badduri (2012)

it has been found that GA-based optimization tools like Non Sorted Dominating

Genetic Algorithm (NSGA-II) (Deb, Agrawal, Pratap, and Meyarivan, 2002) can

be very effective in solving such problems. The optimization problem at hand is

treated as follows:

Minimize fi(x)

subject to gi(x) > 0

with variable bounds

ai < xi < bi, i = 1, . . . , n

The first objective is to maximise the tilt of the end-effector as expressed in terms of

Rodrigues parameters c1 and c2. Following the approach demonstrated in Section

4.2.2, c1 = cos ς tan(ϕ2 ) and c2 = sin ς tan(ϕ2 ). Thus the aim is to maximise tilt ϕ

of the end-effector. The second objective is to maximise the range of heave motion

which can be directly related to the lengths of the crank and the strut as shown
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in Fig. 6.11.

Figure 6.11: Geometrical condition for maximum heave in MaPaMan-I

f1(x) = −ϕ

f2(x) = −zmax,where z2
max =

(l1 + r)2 +
(
x1 −

l0
2 − rt

)2


and the constraints g(x) includes the singularity condition obtained in Chapter

4.2, joint limits for the crank, strut as well as the spherical joint. The following

are the constraint conditions:

• Configuration should be non singular;

g1(x) = S(γ)2 − ε, (6.4.1)

ε is chosen to be 10−4 on the trial and error.

• There is a limitation on crank angles based on physical joint limits. The lim-
its can be decided based on the physical design of the manipulator; however
for the sake of illustration, we have chosen the following limits.

g2(x) = θ1 −
π

6 (6.4.2)

g3(x) = π

2 − θ1 (6.4.3)
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Similarly we find g4(x), g5(x), g6(x), g7(x) corresponding to θ2 and θ3.

• The strut angles are limited by physical joint limits. The range of these
values can be decided based on the physical design, however we have chosen
the following limits for the sake of illustration.

g8(x) = γ1 (6.4.4)

g9(x) = 3π
4 − γ1 (6.4.5)

Similarly we find g10(x), g11(x), g12(x), g13(x) corresponding to γ2 and γ3.

• Spherical-joint limits: The spherical joint has a restricted range of motion

Figure 6.12: Geometrical condition for angle subtended by spherical joint at
the end-effector in MaPaMan-I

due to its mechanical construction and hence the angle (αi) subtended by
the spherical joint with the end-effector adds constraints to the motion as
shown in Fig. 6.12. This angle is computed by finding a unit vector along
the direction of strut(v1) and measuring the angle subtented by it with the
unit normal vector (n) to the end-effector.

v1 = (b1 − p1)
r

(6.4.6)

n = (p1 − p2)× (p1 − p3)√
3d2

t/2
(6.4.7)

α1 = arccos (n · v1) (6.4.8)
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Hence the constraint functions are:

g14(x) = arccos
(

2(b1 − p1) ·
(

(p2 − p1)× (p3 − p1)√
3rd2

t

))
(6.4.9)

g15(x) = π

3 − arccos
(

2(b1 − p1) ·
(

(p2 − p1)× (p3 − p1)√
3rd2

t

))
(6.4.10)

Similarly we frame constraints g16(x), g17(x), g18(x), g19(x) corresponding
to p2 and p3.

The design parameters are x = (l0, l1, r, rt, ς, ϕ, zc)T . The variable bounds for

the design variables are given in Table 6.1.

Table 6.1: Variable ranges used in the optimization study

Variable Lower limit Upper Limit
l0 60 125
l1 60 100
r 75 110
rt 90 125
ς -3.14 3.14
ϕ -3.14 3.14
zc 140 180

Based on the parametric study carried out by Badduri (2012), the optimal param-

eters chosen are for NSGA-II are shown in Table 6.2.

Table 6.2: Values of parameters used in the optimization study

Parameter value
Npop 400
Ngen 400

Probability of crossover 0.7
Probability of mutation 0.7

SBX parameter 14
Coefficient of mutation 35

We obtain about 100 solutions for this optimization problem. The Table 6.3 shows

the results of a few of the 100 solutions obtained. Certain key observations of the

optimization results are, maximum tilt=−1◦ and it is achieved at low heave values.
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Table 6.3: Optimization results

l0 l1 r rt ς z
125 96.86 121.5 110 2.7 145
125 96.56 103 110 2.8 147.2
125 84.8 109.6 110 2.01 142.3

Lower values of rt and high values of l0, r and l1 produce good range of motion.

6.5 Conclusion

In this Chapter, we defined a few performance metrics and studied the variation of

those metrics on changing the values of design parameters. A dynamic visualiser

was created to study the parameter space systematically, to understand coopera-

tive/competitive nature of pairs of metric variations. The metrics are senstive to

certain variables more than the other; these are are identified to be able to study

from a smaller set of variables. The impact of the design variables on various

metrics are studied.

An optimiser was used to study the effect of design variables on the range of mo-

tion. It was used to find the best set of dimensions for a desired range of motion

of the platform, taking into account geometric constraints like singularities, and

design constraints like like joint limits, joint intersections etc. The aim of creating

the optimiser module was not to optimise the dimensions for a specific problem,

but to provide a platform where contraints arising specifically due to the design

can be plugged into the code and upon choosing the appropriate values of vari-

ables, characteristic to GA, the best link lengths can be obtained. As observed in

the example, we obtain several optimal solutions, hence we can first truncate the

values to desired position after decimal and then perform a local optimisation at

these points to obtain the optimal solution. Alternatively more constraints can be

added from dynamics or kinetostatics etc to reduce the solution space. Detailed

study of this however falls beyond the scope of this report as the contribution of
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this report is only towards creating a framework for optimising the link dimensions

in order to achieve maximum range of motion,
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CHAPTER 7

Prototype

7.1 Introduction

In the previous chapters detailed studies have been carried out to analyse the

kinematics of the manipulator, singularities encountered, dynamics, effect of vari-

ous design parameters on certain performance metrics of the manipulator etc. To

validate most of these studies as well as adopt the control strategies developed in

concurrent studies by Mehta (2012), a physical prototype was required. It was

decided to first build a prototype of MaPaMan-I as most of the theoretical studies

were first carried out on this configuration of MaPaMan-I to begin with. This

Chapter discusses the design details of two versions of prototypes of MaPaMan-I

that were designed and fabricated. The first prototype was built to mimic the

kinematic model, while the second prototype has a number of sensors embedded

in it for error correction and real-time control. The electronic and software inter-

faces that were used to get the manipulator running are also discussed in brief at

the end of the Chapter.

7.2 Prototype-I

It was decided that a desktop prototype would be most ideal to fabricate and

perform experiments on. Therefore, the dimensions of the prototype were decided

assuming it would fit in a cube of side 1m when fully assembled. Based on past

experience of working with fabrication of manipulators, it was decided that the

prototype would be built completely out of metal; preferably steel because:

• If plastics are used for fabricating the links, then they would be compliant
and introduce inaccuracies to the system.



• Aluminium could be an option for building the prototype, but since most
of the components like bearings and fasteners are fabricated using steel, the
compatibility between these two materials become a problem, aluminium
being a softer metal.

• Steel on the other hand would make the links heavy, but it would have very
high load carrying capability and it is easy to weld and can be machined to
great accuracies to obtain desired dimensions.

• Also steel is readily available and relatively inexpensive.

7.2.1 Design details

The first design decision taken was the selection of actuators. Maxon-RE150

motors were chosen as the actuators for the prototype, because they were already

available at the Robotics Lab, Engineering Design. Based on the torque capacity

of the motor and the maximum space limitation, the following target specifications

were decided upon.

• The target load to be carried = 5kg

• range of motion in roll = 30◦

• range of motion in pitch = 30◦

• range of motion in heave = 8cm

The target specifications were chosen to be able to compete with a scaled down

version of an existing design of a commercial 3-DoF manipulator by Inmotion built

to be used as a gaming chair. Based on the target specifications, dimensions of

the links were chosen using the approach followed in Section 6.2. The dimensions

shown in Table A.1, were the final dimensions selected such that the target load

could be lifted when the motors works at 25% of its full torque capacity.

The design of MaPaMan-I has 12 passive rotary joints and three spherical joints.

Hence the various options available to design these were first studied.

1. Rotary joints: Two typical designs for rotary joints are shown in Fig. 7.1
and Fig. 7.2. The following are some details about each:
• The first design involves two links coupled by a unit that houses a

bearing. The two links lie on parallel planes at all points of time and
hence they never intersect each other(see Fig. 7.1(b)). This design
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provides complete freedom for range of motion between the two links.
The drawback of this design however is that the load applied on one
link is taken in a cantilevered fashion by the pin joining the inner-race
of the bearing and one of the links. This means there is possibility for
deflection of one of the links w.r.t. the other at the pin. Also by virtue
of their construction, bearings typically have a single row of balls which
allows for a small misalignment, causing the links to have a small out
of plane motion w.r.t. each other.
• The second design involves a fork arrangement, wherein one of the

links is trapped inside the fork of the other. A bearing is placed on
the inner link and a pin connecting the fork and the inner-race of the
bearing completes the assembly as shown in Fig. 7.1(b). This design
can take more loads than the previous design as the pin is not more
cantilevered. Also the out of plane bending due to inaccuracies in the
bearing is reduced in this design, as the inner link is trapped in the
fork and can move out of plane only subject to the tolerances provided
in while fabricating the slot in the fork. The demerit of this design is
that the links lie on the same plane and hence are subjected to link-
interferences. This reduces the relative motion of the links w.r.t. each
other.

(a) Links in parallel planes connected by a
bearing

(b) Fork type arrangement of links connected
by a pin

Figure 7.1: Candidate designs for the revolute joints of MaPaMan

2. Spherical joints: There are two typical solutions that are generally em-
ployed when spherical joints are needed. These are shown in Fig. 7.2. The
following are some details about each:
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• The first solution is a rod-end bearing. It is typically used as an alter-
nate to rotary joints to take care of misalignments in assemblies. The
rod-end bearings are designed to provide full rotation in one axis and
a slack of about 15◦ in the other two axes. As a result the range of
motion is very low for these joints.
• Commercial manufacturers like “Hephaist” fabricate precision spheri-

cal joints for parallel manipulators. These can undergo a full rotation
about one axis and 60◦ of motion about the other two axes. The mo-
tion is smooth and the joint can take considerable loading. However
the greatest disadvantage of this solution is that the joints are very
expensive ( Rs 40,000 a unit). Further more these need to be imported
which adds on to the cost.

(a) Rod-end bearing (b) Commercial ball-socket joint (Hep-
haist)

Figure 7.2: Typical designs of spherical joints

Based on an analysis of various options in hand, it was decided to use a fork-like

arrangement for the rotary joints. This was because, for the dimensions of links

chosen, the displacement of the crank required to produce the required range of

motion is not very high. A suitable slot-length can be provided in the fork to enable

the links to move the required range of motion, hence avoiding link interferences

in the desired work-space. Fig. 7.1(b) shows the design at the coupler-rocker joint

b1.

A new solution was conceived of for the spherical joint as rod-end bearings had

a range of motion that was too low for the purpose in hand and the commercial

joints were very expensive. Spherical joints were fabricated in-house to reduce cost
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as well as obtain desired range of motion. The designed spherical joint has two

parts, the socket and the ball. The socket needs to provide an accurate spherical

groove to guide the ball properly. The socket was hence manufactured to very

high precision (≈ 0.1mm) using ABS plastic on a Rapid Prototyping machine

using Fused Deposition Molding technique. The socket was then reinforced with a

casing made of mild-steel. This ensures that the socket provides the right contour

for the ball to move while the metal reinforcements ensure that it withstands the

loading. The ball that stays arrested in the socket was made out of a bearing ball.

The ball is too hard to be machined and a hole was made in it using EDM. A rod

was then inserted into it and fit tight. The rod is threaded at the other end to fix

it onto any link and a flat portion for the spanner to tighten. The entire assembly

is shown in Fig. 7.3. This solution is almost as inexpensive as the rod-end bearing

and has a range of motion similar to the commercial spherical joint ( 65◦ in 2 axes

and 360◦ in one axis).

Thus using the fork-type arrangement for rotary joints and the in-house fabricated

spherical joints all the components were fabricated (refer to appendix() for the

details of the CAD drawings of each link). The following are some nuances of the

design details of individual parts:

• Crank: The crank is designed as shown in Fig. 7.4. It is coupled to the
motor through a coupler, which is fit to the motor shaft with a key and
connected to the crank with nuts and bolts.

• Rocker: The rocker is similar in design to the crank. The only difference is
that it is not actuated, hence it is arrested in the fork of the rocker-stand. It
houses a bearing whose inner race is connected to the rocker-stand through
a pin.

• Coupler: The coupler is the link that is arrested in the fork of the rocker,
crank as well as the strut. It has three bearings tight-fit to it and then
connected to the rocker, crank and strut through pins.

• Strut: The strut stalk is designed as the fork that meets the coupler at one
end, and houses the rod of the ball-joint at the other end. It is provided with
a bend as shown in Fig. 7.5 in order to increase the range of motion. This
is because, the dimensions of the links are such that the strut is completely
stretched out when the crank angle is 88◦; which means, the motion of the
crank on either side of 88◦ would produce an identical pose of the end-effector
and hence the crank is chosen to move only on one direction. This implies
that if the strut was a straight link, then the range of motion of the spherical
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(a) Spherical joint designed
in-house

(b) Range of motion

(c) Assembing the spherical joint

Figure 7.3: Typical designs of spherical joints

Figure 7.4: The crank-motor assembly

joint that would be utilised would be half of its total capacity. Thus it is
bent as shown in Fig. 7.5 to utilise the entire range of motion provided
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by the spherical joint. It has a blind threaded hole at one end, where the
rod-end of the ball joint can be screwed in place.

(a) Spherical joint designed in-house (b) Range of motion

Figure 7.5: The design of strut

• The crank, rocker, coupler and the strut are all manufactured from mild-steel
using CNC milling to obtain good accuracy of required dimensions.

• Due to the fork arrangement, metal surfaces may rub over each other due to
manifacturing inaccuracies. To reduce friction that can arise due of this, the
surfaces are chrome-plated. Chrome-plating makes the surfaces hard and
gives them a smooth finish.

• The base is made heavy to withstand the reaction forces from all the legs
and to keep the system from shaking when in motion. Three set screws are
provided to adjust for its orientation with the ground to maintain parallelism.
Wheels are attached at the base to easily move the setup as shown in Fig.
7.6.

The fabricated components were assembled as shown in Fig. 7.7. All the

geometric and inertia parameters, used for experiments, are retrieved from the

respective CAD models. It is to be noted that the encoders present in the motors

are of incremental type and hence the actual value of motor angles when all the

links are all in the base state(see Fig. 7.8) are obtained from the CAD model and

are incremented here after using the sensor readings. An inertial measurement

unit(IMU) is used to measure the values of the link angles in the actual prototype
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Figure 7.6: The design of base

Figure 7.7: The assembly of prototype-I

and cross-check them with the angles measured from the CAD model to compen-

sate for any minor manufacturing inaccuracies.
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Figure 7.8: The base position of prototype-I

87



7.3 Prototype II

The first prototype had one serious drawback; that of backlash. The encoder

present in the motors are placed such that they do not observe the backlash com-

ing from the gear-box. This means that when the encoder reads a position, it is

not necessarily the position of the crank. Thus to compensate for this, another

encoder was used at the rocker end in prototype-II. This encoder would read the

position of the rocker which would be the same as that for the crank (as the four-

bar is a parallelogram in this case) and then correct for itself from the reading of

the motor-encoder.

While performing a closed-loop control, it is required to perform a forward kine-

matic computation at each step as was pointed out in Section 3.7, this is a time

consuming task and hence an incremental approach to forward kinematics was

developed(see Section 3.7). However another approach to solving this problem

was conceived, by adding a sensor at the joint between the coupler and the strut

and directly sensing it rather than computing it (refer Mehta (2012)). Hence

another sensor was added in each joint b2 in prototype-II. Except for adding a

total of 6 sensors to the set-up, the design of the links remain mostly the same in

prototype-II as in prototype-I.

7.3.1 Design details

Most of the parts have the same design, while minor alterations are made to some

of them to accommodate the sensors. The sensors used are incremental encoders

of metallic type. They have a rotating shaft and a fixed threaded portion. The

design alterations basically accommodate the sensors in such a way that the shaft

is fixed to one of the links while the threaded portion is fixed to the other w.r.t.

which the connected link moves. Folowing are some nuances of the design details

of the components:

• An encoder is fixed at the rocker-stand joint to read the position of the
rocker. The pin that is used in the earlier design remains fixed to the forks
of the stand while the rocker moves w.r.t. the pin due to the bearing. Such
a design would pose difficulties in accommodating the encoder, hence the
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design is modified a bit. The bearing is removed from the rocker and two
bearings are added to the forks of the rocker-stand. A square hole is made in
the rocker through an EDM process and a pin in inserted. The pin now stays
fixed w.r.t the rocker and moves on the bearings at the fork. The pin has a
provision to accommodate the shaft of the encoder, where it lies inside, held
by grub-screws. The threaded portion of the encoder is connected to the
rocker stand through a connecting plate with the help of nuts and bolts as
shown in Fig. 7.9. Thus when the rocker moves w.r.t. the rocker stand, the
encoder shaft moved w.r.t. the threaded portion and the rotation is sensed.

Figure 7.9: Accommodating the encoder at the rocker

• A similar philosophy is used for placing the encoder at the joint between the
strut and the coupler. However the exact same implementation as that for
the rocker cannot be done due to space constraints. there is lack of enough
space on the forks of the strut to house two bearings, hence only one bearing
is used while the other side is made smooth using chrome plating. The pin
is also chrome plated so that these two surfaces move easily over each other.
Adding a thin nylon washer was first contemplated, but later abandoned
when it was realised that the two chrome plated surfaces worked as well as
expected. The coupler has a square hole just like the rocker and a pin in
inserted to connect the fork of the strut to the coupler. The encoder shaft in
inserted and held using grub-screws while the threaded portion is connected
to a plate that is then connected to the strut.

• Due to the modifications made to the rocker stand, it now becomes wider
than earlier. This makes it difficult to place the three rocker-stands as close
to each other as they were before. Hence they are moved out a little and the
x1 value now becomes 150mm from 135mm.

• Increasing the x1 value decreases the range of motion a little. To compensate
for it, the range of motion of the coupler w.r.t. the crank is increased. In
the earlier design, there was link intersection at crank angle is 34.6◦. By
modifying the coupler as shown in Fig. 7.10, the link intersection now occurs
at 21.49/circ crank angle. This more than makes up for the loss in range of
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motion due to increase in x1. The final dimensions of the links are provided
in Table B.1

(a) Range of motion in prototype-I (b) Range of motion in prototype-II

Figure 7.10: Modification in the design of the coupler link for increased range
of motion

The components are assembled and the new set-up is shown in Fig. 7.11.

Figure 7.11: The assembly of prototype-II
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7.4 Details of the encoders

For correcting the backlash, incremental encoders were placed at the rocker end.

The choice of these encoders were made as follows:

• The error due to backlash was measured to be about 2◦ (refer Mehta (2012)).
To correct this, we need the resolution of the encoder to be smaller than 2◦.

• To make the encoder compatible with the rest of the prototype we needed
it to be made of metal.

• It is difficult to obtain absolute-type encoders with high resolution and so in-
cremental encoders were chosen. Among incremental encoders, quadrature-
type encoders were chosen as they provide data about direction of motion
which is important in our application.

• SE-5, of US-Digital matched our requirements as they are metallic, quadrature-
type and offer 400 pulses per rotation. In a quadrature encoder, each clock
pulse gives 4 readings, hence 400ppr = 360

400×4 which tantamounts to 0.25◦.

• Incremental encoders with higher resolution are also available, but due to
cost-constraints, SE-5 was purchased.

Upon choosing the encoders, it is also important to decide how to read si-

multaneously from 6 of them and send that data to a CPU for processing and

controls. A 1047-PhidgetEncoder HighSpeed 4-input IC, was used to perform this

objective. The data is read parallely from all the 6 encoders, packaged into a

packet and then sent serially via the USB port to the computer. It has a high

count rate of 2,50,000 counts per second, which means it can read from an encoder

with 1600 counts per second data as long as the speed of the strut is less than

10,000rpm. As this suits our requirement completely we use phidget to read from

the encoders.

7.5 Details of the IMU

An IMU was used to find out the actual inclinations of the links at base position

to cross-check them with the values obtained from the CAD model. Also IMU was

used to find out the horizontality of the base which could be adjusted with the help
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of set-screws. Vector Nav was the IMU chosen for this purpose because it has an

accuracy as high as 0.5◦ in roll and pitch in static sensing; and all the sensing we

required was to be done in static scenario. Also it has a dynamic accuracy of 6 2◦,

along with a tunable Kalman filter; which would be useful in performing real-time

control based on its readings. Though that work is beyond the scope of this report,

the same IMU might be useful for such applications in future. Chapter 8 talks

about an application of MaPaMan-I, which uses an IMU for dynamic sensing. The

IMU has a 3-axis gyro, magnetometer and accelerometer. It measures rates of roll,

pitch, yaw, surge, sway and heave and sends them in the form of serial data to the

computer. It also performs an onboard integration and sends roll, pitch and yaw

data also. However this data is subject to constantly building drift and it needs

to be corrected once in a while through external means.

7.6 Details of the software used

The Table 7.1, provides the details of the software used for setting up the interface

from computer to the controller and to drive the actuators:

Table 7.1: Software details
S No. Software Description Purpose
1 Matlab Version-7.0 Computing the

desired trajectories etc.

2 Galil Smart Terminal Galil controller software Interface between
(revision-1.0 C) Matlab and controller

3 Windows XP-SP3 Operating system Runs the Matlab
(32-bit) code, interfaces the

input/output signal
4 Phidget Terminal Encoder reader Reads from multiple

encoders, Interface between
encoders and Matlab

5 Vector Nav Inertial measurement unit Measures roll,
pitch, yaw and their rates
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7.6.1 Details of the electronic components

The details of the actuators, controller, driver etc., used in experiments are given

in table 7.2:

Table 7.2: Devices used in experiments
S No. Part Model Specifications Number
1 D.C. motor Maxon 150 Watts, 3

(Graphite brushes) RE40,218009 Nominal torque - 0.177 Nm

2 Encoder Maxon 1024 PPR 3
(Incremental type) L250,225787

3 Gearbox Maxon Gear ratio - 74:1 3
(Planetary gearhead) GP42C,203123

4 Controller Galil 4-axis, 1
DMC-1846 PCI-based

motion controller
5 Amplifier Galil 4-axis, 1

AMP-19540 500 Watts per axis
6 Communication cable Galil 100 pin HD cable 1

Cable-100-4M
7 Computer Intel(R) E8500, 3.16 GHz 1

core 2Duo 2GB RAM
8 Power supply VI microsystem 30V, 5A 1

Elpower
9 Encoder US Digital 400 PPR 6

(Incremental type) S4
10 Encoder reader IC Phidget Time resolution 1µs 2

1047
11 Inertian Measurement Vector Nav Orientation accuracy 1

0.5◦ static condition
Unit VN-100 rugged 2◦ dynamic condition

Sensor sample rate 120kHz

7.7 Conclusion

Two prototypes of MaPaMan-I were designed and fabricated based on certain tar-

get specifications. The prototypes were used to test control strategies developed

in concurrent studies by Mehta (2012). The basis for designing was the dynamic

analysis carried out by Mehta and the studies on parametric variations (see Chap-
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ter 6). The actuators in the prototype were interfaced with a CPU through Galil

controller, while the data from the encoders were read using a Phidget module.

The prototype-II was built as an improvement over prototype-I with a number of

sensors for error reduction and realtime control. Section 8 discusses the details of

a couple of applications of prototype-II.
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CHAPTER 8

Developing MaPaMan-I for motion simulation

applications

8.1 Introduction

A prototype of MaPaMan-I was developed with features like backlash correction

and sensor based realtime control. The details of the same can be found in Section

7.3. A number of control strategies were developed for trajectory tracking of

MaPaMan-I by Mehta (2012) and were implemented on the prototype. Based

on inputs from his work, the prototype was developed into a motion simulation

platform for two purposes:

1. To simulate offline trajectories of different vehicles

2. To mimic motion of a joystick in realtime

8.2 Interfacing

A “dual-loop” control strategy has been developed to control MaPaMan-I. Details

on this can be found in Mehta (2012). However a brief explanation of this scheme

is presented here.

A desired trajectory is chosen in terms of roll, pitch and heave. Inverse kinematic

computations are performed to compute the desired motor angles. These values

are sent to the motor via the motor controller which internally has a PD control.

The motor tries to attain its position but due to backlash in the gears, etc. the

crank does not reach the desired position. Hence the reading from the rocker is

noted along with the reading from the sensor at the strut-coupler joint. Using

these readings, upon back computation, sensed values of roll-pitch and heave are



obtained. An integral control (dual loop) is applied to correct the error between

the desired and sensed values of the task-space. The corrected values are then

subjected to inverse kinematic computations to obtain new values for the motor

angles thus completing a control loop.

An analysis was carried out to compute the maximum theoretical error possible

in the measurement of task-space coordinates given the resolution of the encoders

used for error detection (Mehta, 2012). Based on the analysis, we obtain 0.5◦

to the max theoretical error in roll and pitch and 0.8mm as the error in heave.

A number of experiments have been carried out to track various mathematically

well-defined trajectories with the dual-loop scheme yielding satisfactory results.

However it was decided to test the capability of the prototype to track trajectories

that are not so well-defined; as most motions in real life can hardly be represented

by simple mathematical functions. An IMU was used to dynamically measure the

roll and pitch angles of a bicycle and a skateboard under motion and MaPaMan-I

was made to follow that trajectory.

Simulate offline trajectories of different vehicles

Roll angle and pitch angle data were collected from the IMU and stored offline.

The noise in the data was filtered using a simple low-pass filter using Matlab.

The data was then fed into the code for dual-loop control of MaPaMan-I. Data

from a number of trajectories are obtained and simulated. The results for one

motion each for bicycle and skateboard are illustrated here. Fig. 8.1 shows the

experimental results obtained, when MaPaMan-I is made to track a trajectory in

roll and pitch obtained from a bicycle. The rms errors in roll and pitch angles are

0.29◦ and 0.4◦, while heave shows an rms deviation of 0.4mm.
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(a)

(b)

(c)

Figure 8.1:
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Similarly Fig. 8.2 shows the simulation results for roll and pitch variations

obtained by simulating the motion of a skateboard. Note that the skateboard

only has one-DoF; but the roll-axis of the IMU is not aligned to the roll-axis of

the skateboard to measure both roll and pitch at each instant.The rms error in

tracking roll angle and pitch angle are 0.27◦ and 0.29◦ respectively. Though the

heave input to the system was zero, the system was made to track the desired roll

and pitch at a fixed heave = 185mm. The rms error in heave is 0.6mm. Note

that all the rms errors obtained are below the theoretical accuracy of the system,

hence validating that the system is fairly accurate.

(a)

(b)

(c)

Figure 8.2:
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Conclusion

The maximum errors obtained while simulating the non-periodic trajectories as

obtained from a cycle and skateboard are typically of the order of 0.3◦ in roll and

pitch and about 0.5mm in heave. Such low values of error are extremely good for

accurate simulations of differnet types of motions. Hence this exercise consolidates

the possibility of application of MaPaMan in the field of motion simulation and

gaming chairs.

Mimic joy-stick motion in realtime

An Attack-3 joy-stick was interfaced with manipulator through a computer and

its readings were read inside Matlab. The joystick has potentiometers in it an on-

board processor. Digital data about the absolute position is sent to the CPU via

USB. The format of the packets sent from the joystick follow a standard protocol

and can be directly accessed using the command vrjoystick in Matlab. When

the stick is moved, we get values for roll and pitch that varies in [−1, 1] in each

case. This range is mapped to a desired range of roll and pitch. The joystick

has a third axis that is used to obtain heave input. Upon mapping in a required

fashion, the roll, pitch and heave data is subjected to a dual-loop control on the

prototype. Thus MaPaMan-I is controlled realtime using a joystick. Conclusion

Realtime trajectory tracking using joystick opens avenues for realtime trajectory

tracking using various other input devices as well for various applications. This

prototype can be used as a rehabilitation device, where the physiotherapist pro-

vides the required motion using a joystick and the patient’s ankle which rests on

the end-effector of MaPaMan-I mimics the motion and provides physiotherapy.

If the joystick is made wireless and then interfaced, it could serve as a remote

teleoperating surgical device. The high precision in the motion makes it suitable

for fine orientation requirements in a telescope or a satellite antenna.
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CHAPTER 9

Conclusion and future work

9.1 Overview

In this report, we have introduced a novel 3-DoF spatial parallel manipulator,

MaPaMan, with reconfigurable degrees-of-freedom. MaPaMan has the advantage

of producing swift motions unlike the 3-RPS from which it was designed, thanks

to its linkage mechanism that contains no prismatic actuators or sliding joints.

Also the design is such that the actuators are placed fixed on the ground, which

means they can be replaced with actuators of any specification as per requirement

without changing the entire mechanism. On top of all this, the mechanism can

be mechanically reconfigured from one type of DoF to another type, which makes

the design more versatile than most existing designs. A complete list of features

of MaPaMan over existing manipulators in provided in Section 2.4.

In the next Chapter, kinematic formulations of MaPaMan-I is presented. An in-

depth kinematic analysis of MaPaMan-I and MaPaMan-II; covering aspects of

zeroth-order and first-order has been carried out. It is observed that we obtain a

16-degree univariate polynomial in closed form upon solving the forward kinemat-

ics problem of both MaPaMan-I and MaPaMan-II. The computations are all made

symbolically till this stage to keep the formulation general throughout. Since any

general 16th-degree polynomial cannot be solved analytically, we resort to numer-

ical computations at this stage. The inverse kinematics problem of MaPaMan-I

yields 8 different configurations for a given pose, however due to a more sim-

plified geometry, we observe that the inverse kinematic problem of MaPaMan-II

results in a single closed form solution. Adopting the approach used in Bandy-

opadhyay (2009), the partitioning in the DoF of MaPaMan-I and MaPaMan-II are

found. As expected from geometry we obtain roll, pitch and heave as the 3-DoF

in MaPaMan-I and roll, pitch and yaw as the 3-DoF in MaPaMan-II.

Chapter 4 discusses the gain-type singularities associated with MaPaMan-I. Gain-

type singularities are of prime importance in parallel manipulator as they can lead



to loss of control of the end-effector even when in the workspace. The conditions

for gain-type singularity were framed and an attempt was made to find the sin-

gular manifold in the task-space in closed form. The expression for the singular

manifold was indeed obtianed in closed form but it was very large in size to manip-

ulate and study, and hence it was abandoned. An alternate approach was followed

to visualise the singular manifold, by using contour curves. The contour curves

are slices of the singular manifold taken at fixed heave values. The contour plots

were generated in the rts space as well as in the roll, pitch and heave space. The

singular manifold in the rts reveal 3 way symmetry which comes from the inherent

symmetry of the manipulator. It easily helps us visualise the maximum theoreti-

cal tilt possible in the manipulator. The contour plot in the roll, pitch and heave

space on the other hand give a more intiutive feel to the workspace. A convex

region can be easily marked out in it to plan a path in which the manipulator

never encounters singularity.

Parametric study of the manipulator architecture was carried out to find out the

effect of variation of the design variables on different performance metrics of the

manipulator. As there are no unique performance metrics for parallel manipu-

lators in literature, three major new metrics were conceived of; namely stiffness,

mechanical advantage and inertia ratio of payload to self-weight computed in a

kineto-static sense. A dynamic visualiser was developed to understand the varia-

tion of the metric values with change in input angles, when dynamically changing

the values for the design parameters. The dynamic visualiser helps us understand

which metrics compliment each other in general and which dont. It is observed

that stiffness and mechanical advantage compliment each other while IR behaves

in an opposite manner. Thus studying just one of stiffness or mechanical advan-

tage while designing the manipulator would be sufficient as it would result in us

understanding both. Also we can find out which metrics are sensitive to which

design factors, from the dynamic visualiser which again aids us in the design pro-

cess. Finally a GA based optimization framework is developed to find the best

set of link dimensions that can produce a desired range of motion taking into con-

sideration design constraints like joint limits etc as well as geometric constraints

like singularities. This framework can be extended to incorporate more contraints
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based on the design of the manipulator. An example is illustrated to demonstrate

the usefulness of this framework.

Based on the inputs from Chapter 6, two prototypes of MaPaMan were designed

and fabricated. As most of the theoretical analysis were initially carried out for

MaPaMan-I, it was decided to first build the prototype in the MaPaMan-I con-

figuration. The first prototype was a demonstration of the kinematic model while

the second prototype contains a number of sensors in it to correct for error arising

from various potential sources and carry out dual-loop based, trajectory tracking

control. The most important design challenge was to obtain a ball-socket joint

with desired range of motion at an inexpensive price. A novel design for the ball-

socket joint was conceived of and fabricated in house, that was cheap as well as

met the design requirements in terms of range. The next challenge was to design

all the rotary joints such that there are no out of plane deflections. A fork-type

arrangement was chosen for the purpose as it not only reduced the possibility of

out of plane motion, but also maintained parallelism between the links. The final

important design challenge was to modify the design of the joints so that they can

accomodate the rotary encoders. This problem was solved as shown in Fig. 7.9.

The prototype-II was used to validate control schemes developed in concurrent

studies by Mehta (2012). Prototype-II was made to track mathematically defined

trajectories to great accuracies follwoign a dual-loop based control scheme. In

order to findout the capability of this prototype to track non-periodic trajectories,

it was made to track trajectories obtained from real-life situations like riding of

bicycle, skateboard etc. as shown in Chapter 8. The experimetal results show

that with dual-loop control, the required trajectories can be tracked to very high

accuracies at par with theoretical accuracy of the system, that are computed based

on precision of the sensors involved. The prototype was also interfaced to a joy-

stick through a computer and the end-effector was made to mimic the motion of

the joystick. The prototype successfully mimics the motion of the joystick, hence

revealing its capability for usage as a rehabilitation device or teleoperating device

etc.
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9.2 Future work

Though this report deals with design, analyis and development of MaPaMan, most

of the work presented is presented for MaPaMan-I. This is because, MaPaMan-I

was given priority over MaPaMan-II as the former relates itself more to 3-RPS

than the later; 3-RPS being a well-known manipulator. Though the kinematics

has been solved for both MaPaMan-I and MaPaMan-II, a geometrical implica-

tion directly suggesting the partition in DoF like in the case of MaPaMan-I (see

Section 3.3) has not yet been obtained for MaPaMan-II. Such a relation coming

solely out of geometry would have a lot of implications in path planning.

The physical interpretations of the singularity conditions can be obtained by fol-

lowing the approach presented in Basu and Ghosal (1997). One possible configu-

ration of singularity in MaPaMan-I is presented in Fig. 4.1, where the strut is in

the same plane as the end-effector. The singular manifold of MaPaMan-II on the

lines of MaPaMan-I can be found. If it turns out to be very large, like in the case

of MaPaMan-I, then it can be visualised numericaly in the roll, pitch and yaw

space or in (c1, c2, c3) space. This would be a necessary step when a prototype of

MaPaMan-II is built and is subjected to trajectory tracking.

The entire section on parametric variation studies can be carried out for MaPaMan-II.

Instead of a pure-heave motion, the important motion under study could be a

pure-yaw motion. Newer metrics might have to be defined for performance char-

acterisation e.g. torsional stiffness could be found instead of stiffness in the vertical

direction as in the case of MaPaMan-I.

Prototype of MaPaMan-II can be built following most of the designs as used in

MaPaMan-I. The strut link would undergo a change in design and so would the

coupler. A CAD model of a possible design-candidate for reconfiguring MaPaMan-I

to MaPaMan-II has already been presented in Fig. 2.3. With modifications to the

coupler and the strut, prototype of MaPaMan-II can be fabricated and assembled.

Once the prototype is fabricated, the procedure followed for trajectory-tracking

as used in MaPaMan-I can be directly adapted for MaPaMan-II.
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APPENDIX A

Appendix

A.1 Dimensions of MaPaMan prototype-I

Table A.1: MaPaMan prototype-I dimensions
No. Feature Representation Value (in mm)
1 Base length l0 100
2 Crank length l1 75
3 Rocker length l3 75
4 Coupler length l2 100
5 Strut length r1 105
6 Top plate radius dt 110
7 Base point 1 x1 135
8 Base point 2 x2 35
9 Coupler height h1 19



APPENDIX B

Appendix

B.1 Dimensions of MaPaMan prototpe-II

Table B.1: MaPaMan prototype-II dimensions
No. Feature Representation Value (in mm)
1 Base length l0 100
2 Crank length l1 75
3 Rocker length l3 75
4 Coupler length l2 100
5 Strut length r1 105
6 Top plate radius dt 110
7 Base point 1 x1 150
8 Base point 2 x2 50
9 Coupler height h1 19



APPENDIX C

Appendix

C.1 Inertia values of MaPaMan prototpe-II

Table C.1: MaPaMan prototype-II mass values
No. Feature Representation Value (in kg)
1 Mass of crank m1 0.242
2 Mass of coupler m2 0.120
3 Mass of rocker m3 0.139
4 Mass of strut and m4 0.281

encoder assembly
5 Mass of top plate m5 2.250

Table C.2: MaPaMan prototype-II mass moment of inertia values about centroidal
axis

No. Feature Representation Value (in kg-m2)
1 Inertia of crank I1 3.24× 10−4

2 Inertia of coupler I2 1.85× 10−4

3 Inertia of rocker I3 0.95× 10−4

4 Inertia of strut I4 2.02× 10−4

5 Inertia of top plate I5 (57.3, 57.3, 114.5)× 10−4



C.2 CAD drawings of the mechanical compo-

nents
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Figure C.1: CAD drawing of strut in prototype-I
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Figure C.3: CAD drawing of rocker in prototype-I
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Figure C.5: CAD drawing of rocker-stand in prototype-II
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Figure C.6: CAD drawing of top part of socket in ball-socket joint
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Figure C.7: CAD drawing of bottom part of socket in ball-socket joint
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Figure C.8: CAD drawing of the end-effector
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Figure C.9: CAD drawing of the base plate
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